首页 磁力链接怎么用

Coursera-ML

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2018-5-22 14:32 2024-11-6 22:03 131 1.35 GB 114
二维码链接
Coursera-ML的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
文件列表
  1. I. Introduction (Week 1)/1 - 1 - Welcome (7 min).mp411.95MB
  2. I. Introduction (Week 1)/1 - 2 - What is Machine Learning (7 min).mp49.35MB
  3. I. Introduction (Week 1)/1 - 3 - Supervised Learning (12 min).mp413.45MB
  4. I. Introduction (Week 1)/1 - 4 - Unsupervised Learning (14 min).mp416.66MB
  5. II. Linear Regression with One Variable (Week 1)/2 - 1 - Model Representation (8 min).mp49MB
  6. II. Linear Regression with One Variable (Week 1)/2 - 2 - Cost Function (8 min).mp49.05MB
  7. II. Linear Regression with One Variable (Week 1)/2 - 3 - Cost Function - Intuition I (11 min).mp412.24MB
  8. II. Linear Regression with One Variable (Week 1)/2 - 4 - Cost Function - Intuition II (9 min).mp411.36MB
  9. II. Linear Regression with One Variable (Week 1)/2 - 5 - Gradient Descent (11 min).mp413.5MB
  10. II. Linear Regression with One Variable (Week 1)/2 - 6 - Gradient Descent Intuition (12 min).mp413.03MB
  11. II. Linear Regression with One Variable (Week 1)/2 - 7 - Gradient Descent For Linear Regression (10 min).mp412.18MB
  12. II. Linear Regression with One Variable (Week 1)/2 - 8 - Whats Next (6 min).mp46.08MB
  13. III. Linear Algebra Review (Week 1, Optional)/3 - 1 - Matrices and Vectors (9 min).mp49.56MB
  14. III. Linear Algebra Review (Week 1, Optional)/3 - 2 - Addition and Scalar Multiplication (7 min).mp47.46MB
  15. III. Linear Algebra Review (Week 1, Optional)/3 - 3 - Matrix Vector Multiplication (14 min).mp415MB
  16. III. Linear Algebra Review (Week 1, Optional)/3 - 4 - Matrix Matrix Multiplication (11 min).mp412.59MB
  17. III. Linear Algebra Review (Week 1, Optional)/3 - 5 - Matrix Multiplication Properties (9 min).mp49.81MB
  18. III. Linear Algebra Review (Week 1, Optional)/3 - 6 - Inverse and Transpose (11 min).mp412.87MB
  19. IV. Linear Regression with Multiple Variables (Week 2)/4 - 1 - Multiple Features (8 min).mp48.84MB
  20. IV. Linear Regression with Multiple Variables (Week 2)/4 - 2 - Gradient Descent for Multiple Variables (5 min).mp45.78MB
  21. IV. Linear Regression with Multiple Variables (Week 2)/4 - 3 - Gradient Descent in Practice I - Feature Scaling (9 min).mp49.46MB
  22. IV. Linear Regression with Multiple Variables (Week 2)/4 - 4 - Gradient Descent in Practice II - Learning Rate (9 min).mp49.26MB
  23. IV. Linear Regression with Multiple Variables (Week 2)/4 - 5 - Features and Polynomial Regression (8 min).mp48.26MB
  24. IV. Linear Regression with Multiple Variables (Week 2)/4 - 6 - Normal Equation (16 min).mp417.13MB
  25. IV. Linear Regression with Multiple Variables (Week 2)/4 - 7 - Normal Equation Noninvertibility (Optional) (6 min).mp46.24MB
  26. IX. Neural Networks Learning (Week 5)/9 - 1 - Cost Function (7 min).mp47.66MB
  27. IX. Neural Networks Learning (Week 5)/9 - 2 - Backpropagation Algorithm (12 min).mp413.94MB
  28. IX. Neural Networks Learning (Week 5)/9 - 3 - Backpropagation Intuition (13 min).mp415.44MB
  29. IX. Neural Networks Learning (Week 5)/9 - 4 - Implementation Note Unrolling Parameters (8 min).mp49.38MB
  30. IX. Neural Networks Learning (Week 5)/9 - 5 - Gradient Checking (12 min).mp413.5MB
  31. IX. Neural Networks Learning (Week 5)/9 - 6 - Random Initialization (7 min).mp47.56MB
  32. IX. Neural Networks Learning (Week 5)/9 - 7 - Putting It Together (14 min).mp416.3MB
  33. IX. Neural Networks Learning (Week 5)/9 - 8 - Autonomous Driving (7 min).mp414.88MB
  34. V. Octave Tutorial (Week 2)/5 - 1 - Basic Operations (14 min).mp417.72MB
  35. V. Octave Tutorial (Week 2)/5 - 2 - Moving Data Around (16 min).mp420.77MB
  36. V. Octave Tutorial (Week 2)/5 - 3 - Computing on Data (13 min).mp415.25MB
  37. V. Octave Tutorial (Week 2)/5 - 4 - Plotting Data (10 min).mp413.32MB
  38. V. Octave Tutorial (Week 2)/5 - 5 - Control Statements for while if statements (13 min).mp416.49MB
  39. V. Octave Tutorial (Week 2)/5 - 6 - Vectorization (14 min).mp416.09MB
  40. V. Octave Tutorial (Week 2)/5 - 7 - Working on and Submitting Programming Exercises (4 min).mp45.46MB
  41. VI. Logistic Regression (Week 3)/6 - 1 - Classification (8 min).mp48.77MB
  42. VI. Logistic Regression (Week 3)/6 - 2 - Hypothesis Representation (7 min).mp48.34MB
  43. VI. Logistic Regression (Week 3)/6 - 3 - Decision Boundary (15 min).mp416.74MB
  44. VI. Logistic Regression (Week 3)/6 - 4 - Cost Function (11 min).mp413.09MB
  45. VI. Logistic Regression (Week 3)/6 - 5 - Simplified Cost Function and Gradient Descent (10 min).mp411.96MB
  46. VI. Logistic Regression (Week 3)/6 - 6 - Advanced Optimization (14 min).mp418.15MB
  47. VI. Logistic Regression (Week 3)/6 - 7 - Multiclass Classification One-vs-all (6 min).mp46.93MB
  48. VII. Regularization (Week 3)/7 - 1 - The Problem of Overfitting (10 min).mp411.15MB
  49. VII. Regularization (Week 3)/7 - 2 - Cost Function (10 min).mp411.63MB
  50. VII. Regularization (Week 3)/7 - 3 - Regularized Linear Regression (11 min).mp412MB
  51. VII. Regularization (Week 3)/7 - 4 - Regularized Logistic Regression (9 min).mp410.89MB
  52. VIII. Neural Networks Representation (Week 4)/8 - 1 - Non-linear Hypotheses (10 min).mp410.88MB
  53. VIII. Neural Networks Representation (Week 4)/8 - 2 - Neurons and the Brain (8 min).mp49.89MB
  54. VIII. Neural Networks Representation (Week 4)/8 - 3 - Model Representation I (12 min).mp413.51MB
  55. VIII. Neural Networks Representation (Week 4)/8 - 4 - Model Representation II (12 min).mp413.45MB
  56. VIII. Neural Networks Representation (Week 4)/8 - 5 - Examples and Intuitions I (7 min).mp47.89MB
  57. VIII. Neural Networks Representation (Week 4)/8 - 6 - Examples and Intuitions II (10 min).mp414MB
  58. VIII. Neural Networks Representation (Week 4)/8 - 7 - Multiclass Classification (4 min).mp44.83MB
  59. X. Advice for Applying Machine Learning (Week 6)/10 - 1 - Deciding What to Try Next (6 min).mp46.86MB
  60. X. Advice for Applying Machine Learning (Week 6)/10 - 2 - Evaluating a Hypothesis (8 min).mp48.48MB
  61. X. Advice for Applying Machine Learning (Week 6)/10 - 3 - Model Selection and Train_Validation_Test Sets (12 min).mp414.07MB
  62. X. Advice for Applying Machine Learning (Week 6)/10 - 4 - Diagnosing Bias vs. Variance (8 min).mp48.97MB
  63. X. Advice for Applying Machine Learning (Week 6)/10 - 5 - Regularization and Bias_Variance (11 min).mp412.6MB
  64. X. Advice for Applying Machine Learning (Week 6)/10 - 6 - Learning Curves (12 min).mp412.92MB
  65. X. Advice for Applying Machine Learning (Week 6)/10 - 7 - Deciding What to Do Next Revisited (7 min).mp48.18MB
  66. XI. Machine Learning System Design (Week 6)/11 - 1 - Prioritizing What to Work On (10 min).mp411.17MB
  67. XI. Machine Learning System Design (Week 6)/11 - 2 - Error Analysis (13 min).mp415.43MB
  68. XI. Machine Learning System Design (Week 6)/11 - 3 - Error Metrics for Skewed Classes (12 min).mp413.25MB
  69. XI. Machine Learning System Design (Week 6)/11 - 4 - Trading Off Precision and Recall (14 min).mp415.99MB
  70. XI. Machine Learning System Design (Week 6)/11 - 5 - Data For Machine Learning (11 min).mp412.87MB
  71. XII. Support Vector Machines (Week 7)/12 - 1 - Optimization Objective (15 min).mp416.65MB
  72. XII. Support Vector Machines (Week 7)/12 - 2 - Large Margin Intuition (11 min).mp411.81MB
  73. XII. Support Vector Machines (Week 7)/12 - 3 - Mathematics Behind Large Margin Classification (Optional) (20 min).mp421.83MB
  74. XII. Support Vector Machines (Week 7)/12 - 4 - Kernels I (16 min).mp417.57MB
  75. XII. Support Vector Machines (Week 7)/12 - 5 - Kernels II (16 min) (1).mp417.45MB
  76. XII. Support Vector Machines (Week 7)/12 - 5 - Kernels II (16 min).mp417.45MB
  77. XII. Support Vector Machines (Week 7)/12 - 6 - Using An SVM (21 min).mp423.95MB
  78. XIII. Clustering (Week 8)/13 - 1 - Unsupervised Learning Introduction (3 min).mp43.8MB
  79. XIII. Clustering (Week 8)/13 - 2 - K-Means Algorithm (13 min).mp413.81MB
  80. XIII. Clustering (Week 8)/13 - 3 - Optimization Objective (7 min).mp48.15MB
  81. XIII. Clustering (Week 8)/13 - 4 - Random Initialization (8 min).mp48.67MB
  82. XIII. Clustering (Week 8)/13 - 5 - Choosing the Number of Clusters (8 min).mp49.4MB
  83. XIV. Dimensionality Reduction (Week 8)/14 - 1 - Motivation I Data Compression (10 min).mp414.31MB
  84. XIV. Dimensionality Reduction (Week 8)/14 - 2 - Motivation II Visualization (6 min).mp46.3MB
  85. XIV. Dimensionality Reduction (Week 8)/14 - 3 - Principal Component Analysis Problem Formulation (9 min).mp410.45MB
  86. XIV. Dimensionality Reduction (Week 8)/14 - 4 - Principal Component Analysis Algorithm (15 min).mp417.79MB
  87. XIV. Dimensionality Reduction (Week 8)/14 - 5 - Choosing the Number of Principal Components (11 min).mp411.84MB
  88. XIV. Dimensionality Reduction (Week 8)/14 - 6 - Reconstruction from Compressed Representation (4 min).mp44.98MB
  89. XIV. Dimensionality Reduction (Week 8)/14 - 7 - Advice for Applying PCA (13 min).mp414.7MB
  90. XIX. Conclusion/19 - 1 - Summary and Thank You (5 min).mp46.09MB
  91. XV. Anomaly Detection (Week 9)/15 - 1 - Problem Motivation (8 min).mp48.35MB
  92. XV. Anomaly Detection (Week 9)/15 - 2 - Gaussian Distribution (10 min).mp411.69MB
  93. XV. Anomaly Detection (Week 9)/15 - 3 - Algorithm (12 min).mp413.95MB
  94. XV. Anomaly Detection (Week 9)/15 - 4 - Developing and Evaluating an Anomaly Detection System (13 min).mp415.15MB
  95. XV. Anomaly Detection (Week 9)/15 - 5 - Anomaly Detection vs. Supervised Learning (8 min).mp49.28MB
  96. XV. Anomaly Detection (Week 9)/15 - 6 - Choosing What Features to Use (12 min).mp414.12MB
  97. XV. Anomaly Detection (Week 9)/15 - 7 - Multivariate Gaussian Distribution (Optional) (14 min).mp415.93MB
  98. XV. Anomaly Detection (Week 9)/15 - 8 - Anomaly Detection using the Multivariate Gaussian Distribution (Optional) (14 min).mp416.34MB
  99. XVI. Recommender Systems (Week 9)/16 - 1 - Problem Formulation (8 min).mp410.67MB
  100. XVI. Recommender Systems (Week 9)/16 - 2 - Content Based Recommendations (15 min).mp416.93MB
  101. XVI. Recommender Systems (Week 9)/16 - 3 - Collaborative Filtering (10 min).mp411.75MB
  102. XVI. Recommender Systems (Week 9)/16 - 4 - Collaborative Filtering Algorithm (9 min).mp410.31MB
  103. XVI. Recommender Systems (Week 9)/16 - 5 - Vectorization Low Rank Matrix Factorization (8 min).mp49.68MB
  104. XVI. Recommender Systems (Week 9)/16 - 6 - Implementational Detail Mean Normalization (9 min).mp49.71MB
  105. XVII. Large Scale Machine Learning (Week 10)/17 - 1 - Learning With Large Datasets (6 min).mp46.5MB
  106. XVII. Large Scale Machine Learning (Week 10)/17 - 2 - Stochastic Gradient Descent (13 min).mp415.33MB
  107. XVII. Large Scale Machine Learning (Week 10)/17 - 3 - Mini-Batch Gradient Descent (6 min).mp47.32MB
  108. XVII. Large Scale Machine Learning (Week 10)/17 - 4 - Stochastic Gradient Descent Convergence (12 min).mp413.33MB
  109. XVII. Large Scale Machine Learning (Week 10)/17 - 5 - Online Learning (13 min).mp414.91MB
  110. XVII. Large Scale Machine Learning (Week 10)/17 - 6 - Map Reduce and Data Parallelism (14 min).mp416.06MB
  111. XVIII. Application Example Photo OCR/18 - 1 - Problem Description and Pipeline (7 min).mp47.91MB
  112. XVIII. Application Example Photo OCR/18 - 2 - Sliding Windows (15 min).mp416.52MB
  113. XVIII. Application Example Photo OCR/18 - 3 - Getting Lots of Data and Artificial Data (16 min).mp418.82MB
  114. XVIII. Application Example Photo OCR/18 - 4 - Ceiling Analysis What Part of the Pipeline to Work on Next (14 min).mp416.11MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统