首页 磁力链接怎么用

Udemy - Case Studies in Data Mining with R

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2017-2-8 19:41 2025-1-9 18:37 215 7.14 GB 130
二维码链接
Udemy - Case Studies in Data Mining with R的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
文件列表
  1. 12 Prediction Tasks and Models/009 The Prediction Tasks.mp445.93MB
  2. 12 Prediction Tasks and Models/001 Prelude to Modeling Stock Market Indices.mp418.73MB
  3. 12 Prediction Tasks and Models/006 Random Forests Review.mp444.97MB
  4. 12 Prediction Tasks and Models/007 Create Initial Model part 1.mp464.02MB
  5. 12 Prediction Tasks and Models/005 Decision Trees part 4.mp446.5MB
  6. 12 Prediction Tasks and Models/002 Decision Trees as Applicable to Case Study Tasks.mp446.82MB
  7. 12 Prediction Tasks and Models/010 Precision and Recall and Confusion Matrices.mp447.85MB
  8. 12 Prediction Tasks and Models/011 Neural Network Prediction Technique part 1.mp472.14MB
  9. 12 Prediction Tasks and Models/003 Decision Trees part 2.mp460.62MB
  10. 12 Prediction Tasks and Models/004 Decision Trees part 3.mp464.46MB
  11. 12 Prediction Tasks and Models/008 Create Initial Model part 2.mp475.5MB
  12. 12 Prediction Tasks and Models/012 Neural Network Prediction Technique part 2.mp464.81MB
  13. 13 Prediction Models and Support Vector Machines SVMs/004 SVMs Applied to Stock Market Case.mp451.47MB
  14. 13 Prediction Models and Support Vector Machines SVMs/006 Multivariate Adaptive Regressive Splines.mp450.8MB
  15. 13 Prediction Models and Support Vector Machines SVMs/008 Two Strategies.mp447.44MB
  16. 13 Prediction Models and Support Vector Machines SVMs/003 Review Support Vector Machines SVMs using Weather Data part 3.mp436.2MB
  17. 13 Prediction Models and Support Vector Machines SVMs/007 How Will the Predictions be Used .mp449.7MB
  18. 13 Prediction Models and Support Vector Machines SVMs/002 Review Support Vector Machines SVMs using Weather Data part 2.mp447.56MB
  19. 13 Prediction Models and Support Vector Machines SVMs/009 Writing a Simulated Trader Function part 1.mp450.53MB
  20. 13 Prediction Models and Support Vector Machines SVMs/005 Kernel Functions.mp440.55MB
  21. 13 Prediction Models and Support Vector Machines SVMs/001 Review Support Vector Machines SVMs using Weather Data part 1.mp443.34MB
  22. 13 Prediction Models and Support Vector Machines SVMs/011 Evaluating our Simulated Trades.mp445.56MB
  23. 13 Prediction Models and Support Vector Machines SVMs/010 Writing a Simulated Trader Function part 2.mp440.69MB
  24. 03 Introduction to Predicting Algae Blooms/001 Predicting Algae Blooms.mp470.92MB
  25. 03 Introduction to Predicting Algae Blooms/009 Imputation Replace Missing Values through Correlation.mp485.69MB
  26. 03 Introduction to Predicting Algae Blooms/006 Imputation Dealing with Unknown or Missing Values.mp480.13MB
  27. 03 Introduction to Predicting Algae Blooms/007 Imputation Removing Rows with Missing Values.mp457.39MB
  28. 03 Introduction to Predicting Algae Blooms/008 Imputation Replace Missing Values with Central Measures.mp465.57MB
  29. 03 Introduction to Predicting Algae Blooms/005 Data Visualization Conditioning Plots.mp460.59MB
  30. 03 Introduction to Predicting Algae Blooms/003 Data Visualization and Summarization Histograms.mp463.39MB
  31. 03 Introduction to Predicting Algae Blooms/002 Visualizing other Imputations with Lattice Plots.mp463.75MB
  32. 03 Introduction to Predicting Algae Blooms/004 Data Visualization Boxplot and Identity Plot.mp448.07MB
  33. 07 Pre-Processing the Data to Apply Methodology/006 Semi-Supervised Techniques.mp447.79MB
  34. 07 Pre-Processing the Data to Apply Methodology/005 Defining Data Mining Tasks.mp481.59MB
  35. 07 Pre-Processing the Data to Apply Methodology/008 Lift Charts and Precision Recall Curves.mp487.05MB
  36. 07 Pre-Processing the Data to Apply Methodology/004 Pre-Processing the Data part 3.mp491.74MB
  37. 07 Pre-Processing the Data to Apply Methodology/003 Pre-Processing the Data part 2.mp456.23MB
  38. 07 Pre-Processing the Data to Apply Methodology/002 Pre-Processing the Data part 1.mp463.08MB
  39. 07 Pre-Processing the Data to Apply Methodology/007 Precision and Recall.mp454.53MB
  40. 07 Pre-Processing the Data to Apply Methodology/001 Review the Data and the Focus of the Fraudulent Transactions Case.mp479.02MB
  41. 01 A Brief Introduction to R and RStudio using Scripts/001 Course Overview.mp47.84MB
  42. 01 A Brief Introduction to R and RStudio using Scripts/013 Data Structures Dataframes part 2.mp457.03MB
  43. 01 A Brief Introduction to R and RStudio using Scripts/014 Creating New Functions.mp469.69MB
  44. 01 A Brief Introduction to R and RStudio using Scripts/005 Factors part 1.mp440.95MB
  45. 01 A Brief Introduction to R and RStudio using Scripts/011 Data Structures Lists.mp461.81MB
  46. 01 A Brief Introduction to R and RStudio using Scripts/009 Data Structures Matrices and Arrays part 1.mp442.79MB
  47. 01 A Brief Introduction to R and RStudio using Scripts/010 Data Structures Matrices and Arrays part 2.mp439.44MB
  48. 01 A Brief Introduction to R and RStudio using Scripts/007 Generating Sequences.mp484.51MB
  49. 01 A Brief Introduction to R and RStudio using Scripts/004 Data Structures Vectors part 2.mp447.78MB
  50. 01 A Brief Introduction to R and RStudio using Scripts/002 Introduction to R for Data Mining.mp487.9MB
  51. 01 A Brief Introduction to R and RStudio using Scripts/012 Data Structures Dataframes part 1.mp449.3MB
  52. 01 A Brief Introduction to R and RStudio using Scripts/006 Factors part 2.mp451.89MB
  53. 01 A Brief Introduction to R and RStudio using Scripts/008 Indexing aka Subscripting or Subsetting.mp441.23MB
  54. 01 A Brief Introduction to R and RStudio using Scripts/003 Data Structures Vectors part 1.mp443.78MB
  55. 06 Examine the Data in the Fraudulent Transactions Case Study/002 Fraudulent Case Study Introduction.mp411.17MB
  56. 06 Examine the Data in the Fraudulent Transactions Case Study/005 Continue Exploring the Data.mp449.26MB
  57. 06 Examine the Data in the Fraudulent Transactions Case Study/001 Exercise Solution from Evaluating and Selecting Models.mp419.53MB
  58. 06 Examine the Data in the Fraudulent Transactions Case Study/004 Exploring the Data with Eye toward Missingness.mp463.78MB
  59. 06 Examine the Data in the Fraudulent Transactions Case Study/003 Prelude to Exploring the Data.mp419.48MB
  60. 05 Evaluating and Selecting Models/004 Setting up K-Fold Evaluation part 2.mp454.83MB
  61. 05 Evaluating and Selecting Models/003 Setting up K-Fold Evaluation part 1.mp472.19MB
  62. 05 Evaluating and Selecting Models/008 Predicting from the Models.mp475.05MB
  63. 05 Evaluating and Selecting Models/009 Comparing the Predictions.mp466.94MB
  64. 05 Evaluating and Selecting Models/007 Finish Evaluating Models.mp465.73MB
  65. 05 Evaluating and Selecting Models/001 Alternative Model Evaluation Criteria.mp476.1MB
  66. 05 Evaluating and Selecting Models/006 Best Model part 2.mp455.58MB
  67. 05 Evaluating and Selecting Models/002 Introduction to K-Fold Cross-Validation.mp466.04MB
  68. 05 Evaluating and Selecting Models/005 Best Model part 1.mp444.43MB
  69. 08 Methodology to Find Outliers Fraudulent Transactions/004 Cumulative Recall Chart.mp452.34MB
  70. 08 Methodology to Find Outliers Fraudulent Transactions/009 Experimental Methodology to find Outliers part 4.mp463.94MB
  71. 08 Methodology to Find Outliers Fraudulent Transactions/001 Exercise from Previous Session.mp412.82MB
  72. 08 Methodology to Find Outliers Fraudulent Transactions/003 Review Lift Charts and Precision Recall Curves.mp449.27MB
  73. 08 Methodology to Find Outliers Fraudulent Transactions/007 Experimental Methodology to find Outliers part 2.mp470.71MB
  74. 08 Methodology to Find Outliers Fraudulent Transactions/005 Creating More Functions for the Experimental Methodology.mp437.96MB
  75. 08 Methodology to Find Outliers Fraudulent Transactions/002 Review Precision and Recall.mp448.12MB
  76. 08 Methodology to Find Outliers Fraudulent Transactions/006 Experimental Methodology to find Outliers part 1.mp457.49MB
  77. 08 Methodology to Find Outliers Fraudulent Transactions/010 Experimental Methodology to find Outliers part 5.mp433.41MB
  78. 08 Methodology to Find Outliers Fraudulent Transactions/008 Experimental Methodology to find Outliers part 3.mp467.48MB
  79. 02 Inputting and Outputting Data and Text/005 Example Program powers.R.mp448.33MB
  80. 02 Inputting and Outputting Data and Text/002 Using the scan Function for Input part 2.mp423.92MB
  81. 02 Inputting and Outputting Data and Text/001 Using the scan Function for Input part 1.mp425.08MB
  82. 02 Inputting and Outputting Data and Text/003 Using readline, cat and print Functions.mp444MB
  83. 02 Inputting and Outputting Data and Text/008 Reading and Writing Files part 2.mp459.2MB
  84. 02 Inputting and Outputting Data and Text/004 Using readLines Function and Text Data.mp458.48MB
  85. 02 Inputting and Outputting Data and Text/006 Example Program quad2b.R.mp448.33MB
  86. 02 Inputting and Outputting Data and Text/007 Reading and Writing Files part 1.mp422.59MB
  87. 10 Sidebar on Boosting/004 Replicating Adaboost using Rpart part 2.mp483.57MB
  88. 10 Sidebar on Boosting/006 Boosting Exercise.mp444.8MB
  89. 10 Sidebar on Boosting/002 Boosting Demo Basics using R.mp451.87MB
  90. 10 Sidebar on Boosting/003 Replicating Adaboost using Rpart Recursive Partitioning Package.mp473.06MB
  91. 10 Sidebar on Boosting/001 Introduction to Boosting from Rattle course.mp454.25MB
  92. 10 Sidebar on Boosting/005 Boosting Extensions and Variants.mp484.89MB
  93. 15 Wrap Up Stock Market Case Study/003 Last Session Wrap-Up part 2.mp450.07MB
  94. 15 Wrap Up Stock Market Case Study/001 Prologue to Last Session Wrap-Up.mp469.43MB
  95. 15 Wrap Up Stock Market Case Study/002 Last Session Wrap-Up part 1.mp460.32MB
  96. 11 Introduction to Stock Market Prediction Case Study/004 Accessing the Data part 1.mp453.34MB
  97. 11 Introduction to Stock Market Prediction Case Study/010 Defining the Prediction Tasks part 5.mp442.69MB
  98. 11 Introduction to Stock Market Prediction Case Study/003 Case Study Background and Data part 2.mp468.39MB
  99. 11 Introduction to Stock Market Prediction Case Study/002 Case Study Background and Data part 1.mp469.88MB
  100. 11 Introduction to Stock Market Prediction Case Study/001 Introduction to Stock Market Case Study and Materials.mp414.95MB
  101. 11 Introduction to Stock Market Prediction Case Study/005 Accessing the Data part 2.mp443.16MB
  102. 11 Introduction to Stock Market Prediction Case Study/007 Defining the Prediction Tasks part 2.mp475.3MB
  103. 11 Introduction to Stock Market Prediction Case Study/009 Defining the Prediction Tasks part 4.mp443.73MB
  104. 11 Introduction to Stock Market Prediction Case Study/006 Defining the Prediction Tasks part 1.mp463.1MB
  105. 11 Introduction to Stock Market Prediction Case Study/008 Defining the Prediction Tasks part 3.mp459.8MB
  106. 04 Obtaining Prediction Models/003 Examine Alternative Regression Models.mp4104.96MB
  107. 04 Obtaining Prediction Models/005 Strategy for Pruning Trees.mp464.89MB
  108. 04 Obtaining Prediction Models/002 Creating Prediction Models.mp4106.77MB
  109. 04 Obtaining Prediction Models/001 Read in Data Files.mp478MB
  110. 04 Obtaining Prediction Models/004 Regression Trees.mp495.94MB
  111. 09 The Data Mining Tasks to Find the Fraudulent Transactions/003 Review of Fraud Case part 3.mp455.21MB
  112. 09 The Data Mining Tasks to Find the Fraudulent Transactions/001 Review of Fraud Case part 1.mp458.71MB
  113. 09 The Data Mining Tasks to Find the Fraudulent Transactions/005 Local Outlier Factors.mp467.57MB
  114. 09 The Data Mining Tasks to Find the Fraudulent Transactions/004 Baseline Boxplot Rule.mp438.57MB
  115. 09 The Data Mining Tasks to Find the Fraudulent Transactions/009 SMOTE and Naive Bayes part 2.mp451.6MB
  116. 09 The Data Mining Tasks to Find the Fraudulent Transactions/007 Supervised and Unsupervised Approaches.mp474.09MB
  117. 09 The Data Mining Tasks to Find the Fraudulent Transactions/002 Review of Fraud Case part 2.mp456.72MB
  118. 09 The Data Mining Tasks to Find the Fraudulent Transactions/008 SMOTE and Naive Bayes part 1.mp461.38MB
  119. 09 The Data Mining Tasks to Find the Fraudulent Transactions/006 Plotting Everything.mp449.78MB
  120. 14 Model Evaluation and Selection/001 Quick Review of Case Study Support Vector Machines SVMs.mp455.98MB
  121. 14 Model Evaluation and Selection/010 Continue Evaluating part 2.mp462.74MB
  122. 14 Model Evaluation and Selection/005 So What Approach is Recommended .mp447.52MB
  123. 14 Model Evaluation and Selection/004 Why You Cannot Randomly Resample Records.mp444.75MB
  124. 14 Model Evaluation and Selection/011 Continue Evaluating part 3.mp454.33MB
  125. 14 Model Evaluation and Selection/003 Evaluating Policy One and Policy Two.mp448.91MB
  126. 14 Model Evaluation and Selection/006 Experimental Model Comparisons part 1.mp457.08MB
  127. 14 Model Evaluation and Selection/008 Set Up Ranksystems.mp478.29MB
  128. 14 Model Evaluation and Selection/002 Begin Evaluating Models.mp471.81MB
  129. 14 Model Evaluation and Selection/009 Continue Evaluating part 1.mp455.79MB
  130. 14 Model Evaluation and Selection/007 Experimental Model Comparisons part 2.mp462.74MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统