首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[FreeTutorials.Us] Udemy - Feature Engineering for Machine Learning
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2019-12-3 23:30
2024-12-7 23:32
162
3.71 GB
102
磁力链接
magnet:?xt=urn:btih:c4069cac192c286f32cbe87a76ff1ddc6f293ea8
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmM0MDY5Y2FjMTkyYzI4NmYzMmNiZTg3YTc2ZmYxZGRjNmYyOTNlYThaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
FreeTutorials
Us
Udemy
-
Feature
Engineering
for
Machine
Learning
文件列表
1. Introduction/1. Introduction.mp4
32.86MB
1. Introduction/2. Course curriculum overview.mp4
33.37MB
1. Introduction/3. Course requirements.mp4
10.64MB
10. Feature Scaling/1. Feature scaling Introduction.mp4
20.6MB
10. Feature Scaling/10. Scaling to median and quantiles.mp4
13.01MB
10. Feature Scaling/11. Robust Scaling Demo.mp4
16.55MB
10. Feature Scaling/12. Scaling to vector unit length.mp4
31.94MB
10. Feature Scaling/13. Scaling to vector unit length Demo.mp4
46.31MB
10. Feature Scaling/2. Standardisation.mp4
26.51MB
10. Feature Scaling/3. Standardisation Demo.mp4
41.62MB
10. Feature Scaling/4. Mean normalisation.mp4
19.81MB
10. Feature Scaling/5. Mean normalisation Demo.mp4
45.08MB
10. Feature Scaling/6. Scaling to minimum and maximum values.mp4
17.08MB
10. Feature Scaling/7. MinMaxScaling Demo.mp4
25.89MB
10. Feature Scaling/8. Maximum absolute scaling.mp4
14.6MB
10. Feature Scaling/9. MaxAbsScaling Demo.mp4
31.47MB
11. Engineering mixed variables/1. Engineering mixed variables.mp4
15.27MB
11. Engineering mixed variables/2. Engineering mixed variables Demo.mp4
45.48MB
12. Engineering datetime variables/1. Engineering datetime variables.mp4
23.19MB
12. Engineering datetime variables/2. Engineering dates Demo.mp4
54.01MB
12. Engineering datetime variables/3. Engineering time variables and different timezones.mp4
33.48MB
13. Assembling a feature engineering pipeline/1. Classification pipeline.mp4
135.99MB
13. Assembling a feature engineering pipeline/2. Regression pipeline.mp4
157.57MB
2. Variable Types/1. Variables Intro.mp4
15.3MB
2. Variable Types/2. Numerical variables.mp4
26.88MB
2. Variable Types/3. Categorical variables.mp4
18.4MB
2. Variable Types/4. Date and time variables.mp4
9.8MB
2. Variable Types/5. Mixed variables.mp4
11.25MB
3. Variable Characteristics/1. Variable characteristics.mp4
20.84MB
3. Variable Characteristics/2. Missing data.mp4
40.11MB
3. Variable Characteristics/3. Cardinality - categorical variables.mp4
31.02MB
3. Variable Characteristics/4. Rare Labels - categorical variables.mp4
33.86MB
3. Variable Characteristics/5. Linear models assumptions.mp4
68.89MB
3. Variable Characteristics/6. Variable distribution.mp4
32.77MB
3. Variable Characteristics/7. Outliers.mp4
48.36MB
3. Variable Characteristics/8. Variable magnitude.mp4
19.96MB
4. Missing Data Imputation/1. Introduction to missing data imputation.mp4
29.37MB
4. Missing Data Imputation/10. Mean or median imputation with Scikit-learn.mp4
88.12MB
4. Missing Data Imputation/11. Arbitrary value imputation with Scikit-learn.mp4
52.16MB
4. Missing Data Imputation/12. Frequent category imputation with Scikit-learn.mp4
34.18MB
4. Missing Data Imputation/13. Missing category imputation with Scikit-learn.mp4
24.61MB
4. Missing Data Imputation/14. Adding a missing indicator with Scikit-learn.mp4
35.67MB
4. Missing Data Imputation/15. Automatic determination of imputation method with Sklearn.mp4
80.35MB
4. Missing Data Imputation/16. Introduction to Feature-engine.mp4
40.48MB
4. Missing Data Imputation/17. Mean or median imputation with Feature-engine.mp4
38.64MB
4. Missing Data Imputation/18. Arbitrary value imputation with Feature-engine.mp4
26.75MB
4. Missing Data Imputation/19. End of distribution imputation with Feature-engine.mp4
38.87MB
4. Missing Data Imputation/2. Complete Case Analysis.mp4
46.67MB
4. Missing Data Imputation/20. Frequent category imputation with Feature-engine.mp4
16.15MB
4. Missing Data Imputation/21. Missing category imputation with Feature-engine.mp4
20.42MB
4. Missing Data Imputation/22. Random sample imputation with Feature-engine.mp4
16.09MB
4. Missing Data Imputation/23. Adding a missing indicator with Feature-engine.mp4
25.9MB
4. Missing Data Imputation/3. Mean or median imputation.mp4
52.15MB
4. Missing Data Imputation/4. Arbitrary value imputation.mp4
40.09MB
4. Missing Data Imputation/5. End of distribution imputation.mp4
28.11MB
4. Missing Data Imputation/6. Frequent category imputation.mp4
49.77MB
4. Missing Data Imputation/7. Missing category imputation.mp4
28.17MB
4. Missing Data Imputation/8. Random sample imputation.mp4
102.66MB
4. Missing Data Imputation/9. Adding a missing indicator.mp4
31.09MB
6. Categorical Variable Encoding/1. Categorical encoding Introduction.mp4
34.03MB
6. Categorical Variable Encoding/10. Target guided ordinal encoding.mp4
12.87MB
6. Categorical Variable Encoding/11. Target guided ordinal encoding Demo.mp4
68.75MB
6. Categorical Variable Encoding/12. Mean encoding.mp4
12.84MB
6. Categorical Variable Encoding/13. Mean encoding Demo.mp4
42.05MB
6. Categorical Variable Encoding/14. Probability ratio encoding.mp4
45.65MB
6. Categorical Variable Encoding/15. Weight of evidence (WoE).mp4
20.56MB
6. Categorical Variable Encoding/16. Weight of Evidence Demo.mp4
45.11MB
6. Categorical Variable Encoding/17. Comparison of categorical variable encoding.mp4
78.44MB
6. Categorical Variable Encoding/18. Rare label encoding.mp4
23.31MB
6. Categorical Variable Encoding/19. Rare label encoding Demo.mp4
69.43MB
6. Categorical Variable Encoding/2. One hot encoding.mp4
31.75MB
6. Categorical Variable Encoding/20. Binary encoding and feature hashing.mp4
30.9MB
6. Categorical Variable Encoding/3. One-hot-encoding Demo.mp4
91.4MB
6. Categorical Variable Encoding/4. One hot encoding of top categories.mp4
18.1MB
6. Categorical Variable Encoding/5. One hot encoding of top categories Demo.mp4
57.26MB
6. Categorical Variable Encoding/6. Ordinal encoding Label encoding.mp4
9.42MB
6. Categorical Variable Encoding/7. Ordinal encoding Demo.mp4
57.48MB
6. Categorical Variable Encoding/8. Count or frequency encoding.mp4
15.73MB
6. Categorical Variable Encoding/9. Count encoding Demo.mp4
32.53MB
7. Variable Transformation/1. Variable Transformation Introduction.mp4
18.66MB
7. Variable Transformation/2. Variable Transformation with Numpy and SciPy.mp4
49.41MB
7. Variable Transformation/3. variable Transformation with Scikit-learn.mp4
47.1MB
7. Variable Transformation/4. Variable transformation with Feature-engine.mp4
23.69MB
8. Discretisation/1. Discretisation Introduction.mp4
15.45MB
8. Discretisation/10. Discretisation with classification trees.mp4
26.58MB
8. Discretisation/11. Discretisation with decision trees using Scikit-learn.mp4
80.16MB
8. Discretisation/12. Discretisation with decision trees using Feature-engine.mp4
28.38MB
8. Discretisation/13. Domain knowledge discretisation.mp4
25.67MB
8. Discretisation/2. Equal-width discretisation.mp4
21.54MB
8. Discretisation/3. Equal-width discretisation Demo.mp4
79.1MB
8. Discretisation/4. Equal-frequency discretisation.mp4
22.49MB
8. Discretisation/5. Equal-frequency discretisation Demo.mp4
47.29MB
8. Discretisation/6. K-means discretisation.mp4
18.87MB
8. Discretisation/7. K-means discretisation Demo.mp4
18.83MB
8. Discretisation/8. Discretisation plus categorical encoding.mp4
13.31MB
8. Discretisation/9. Discretisation plus encoding Demo.mp4
36.22MB
9. Outlier Handling/1. Outlier Engineering Intro.mp4
41.97MB
9. Outlier Handling/2. Outlier trimming.mp4
51.09MB
9. Outlier Handling/3. Outlier capping with IQR.mp4
43.57MB
9. Outlier Handling/4. Outlier capping with mean and std.mp4
34.58MB
9. Outlier Handling/5. Outlier capping with quantiles.mp4
24.44MB
9. Outlier Handling/6. Arbitrary capping.mp4
19.69MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统