首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[DesireCourse.Net] Udemy - Master Deep Learning with TensorFlow in Python
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2022-11-13 05:48
2025-1-20 04:32
187
1.41 GB
94
磁力链接
magnet:?xt=urn:btih:b32fa4dc9596273110ecc8a0055a9502488d916b
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOmIzMmZhNGRjOTU5NjI3MzExMGVjYzhhMDA1NWE5NTAyNDg4ZDkxNmJaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
DesireCourse
Net
Udemy
-
Master
Deep
Learning
with
TensorFlow
in
Python
文件列表
1. Welcome! Course introduction/1. Meet your instructors and why you should study machine learning.mp4
105.79MB
1. Welcome! Course introduction/2. What does the course cover.mp4
16.36MB
10. Gradient descent and learning rates/1. Stochastic gradient descent.mp4
9.38MB
10. Gradient descent and learning rates/2. Gradient descent pitfalls.mp4
4.31MB
10. Gradient descent and learning rates/3. Momentum.mp4
6.11MB
10. Gradient descent and learning rates/4. Learning rate schedules.mp4
10.3MB
10. Gradient descent and learning rates/5. Learning rate schedules. A picture.mp4
3.15MB
10. Gradient descent and learning rates/6. Adaptive learning rate schedules.mp4
8.86MB
10. Gradient descent and learning rates/7. Adaptive moment estimation.mp4
7.78MB
11. Preprocessing/1. Preprocessing introduction.mp4
8.42MB
11. Preprocessing/2. Basic preprocessing.mp4
3.65MB
11. Preprocessing/3. Standardization.mp4
8.33MB
11. Preprocessing/4. Dealing with categorical data.mp4
6.08MB
11. Preprocessing/5. One-hot and binary encoding.mp4
6.24MB
12. The MNIST example/1. The dataset.mp4
7.37MB
12. The MNIST example/2. How to tackle the MNIST.mp4
7.3MB
12. The MNIST example/3. Importing the relevant packages.mp4
5.46MB
12. The MNIST example/4. Outlining the model.mp4
18.37MB
12. The MNIST example/5. Declaring the loss and the optimization algorithm.mp4
7.14MB
12. The MNIST example/6. Accuracy of prediction.mp4
12.38MB
12. The MNIST example/7. Batching and early stopping.mp4
4.58MB
12. The MNIST example/8. Learning.mp4
15.9MB
12. The MNIST example/9. Discuss the results and test.mp4
21.97MB
13. Business case/1. Exploring the dataset and identifying predictors.mp4
23.26MB
13. Business case/10. Testing the model.mp4
4.29MB
13. Business case/11. A comment on the homework.mp4
13.01MB
13. Business case/2. Outlining the business case solution.mp4
3.84MB
13. Business case/3. Balancing the dataset.mp4
13.81MB
13. Business case/4. Preprocessing the data.mp4
34.33MB
13. Business case/6. Create a class for batching.mp4
27.65MB
13. Business case/7. Outlining the model.mp4
19.46MB
13. Business case/8. Optimizing the algorithm.mp4
12.22MB
13. Business case/9. Interpreting the result.mp4
5.35MB
14. Appendix Linear Algebra Fundamentals/1. What is a Matrix.mp4
33.59MB
14. Appendix Linear Algebra Fundamentals/10. Dot Product of Matrices.mp4
49.38MB
14. Appendix Linear Algebra Fundamentals/11. Why is Linear Algebra Useful.mp4
144.33MB
14. Appendix Linear Algebra Fundamentals/2. Scalars and Vectors.mp4
33.84MB
14. Appendix Linear Algebra Fundamentals/3. Linear Algebra and Geometry.mp4
49.8MB
14. Appendix Linear Algebra Fundamentals/4. Scalars, Vectors and Matrices in Python.mp4
26.67MB
14. Appendix Linear Algebra Fundamentals/5. Tensors.mp4
22.52MB
14. Appendix Linear Algebra Fundamentals/6. Addition and Subtraction of Matrices.mp4
32.61MB
14. Appendix Linear Algebra Fundamentals/7. Errors when Adding Matrices.mp4
11.17MB
14. Appendix Linear Algebra Fundamentals/8. Transpose of a Matrix.mp4
38.08MB
14. Appendix Linear Algebra Fundamentals/9. Dot Product of Vectors.mp4
23.99MB
15. Conclusion/1. See how much you have learned.mp4
13.96MB
15. Conclusion/2. What’s further out there in the machine and deep learning world.mp4
6.27MB
15. Conclusion/3. An overview of CNNs.mp4
10.93MB
15. Conclusion/5. An overview of RNNs.mp4
4.86MB
15. Conclusion/6. An overview of non-NN approaches.mp4
7.84MB
2. Introduction to neural networks/1. Introduction to neural networks.mp4
13.56MB
2. Introduction to neural networks/10. The linear model. Multiple inputs.mp4
7.5MB
2. Introduction to neural networks/12. The linear model. Multiple inputs and multiple outputs.mp4
38.29MB
2. Introduction to neural networks/14. Graphical representation.mp4
6.35MB
2. Introduction to neural networks/16. The objective function.mp4
5.72MB
2. Introduction to neural networks/18. L2-norm loss.mp4
7.27MB
2. Introduction to neural networks/20. Cross-entropy loss.mp4
11.36MB
2. Introduction to neural networks/22. One parameter gradient descent.mp4
17.76MB
2. Introduction to neural networks/24. N-parameter gradient descent.mp4
39.46MB
2. Introduction to neural networks/3. Training the model.mp4
8.81MB
2. Introduction to neural networks/5. Types of machine learning.mp4
12.21MB
2. Introduction to neural networks/7. The linear model.mp4
9.13MB
3. Setting up the working environment/1. Setting up the environment - An introduction - Do not skip, please!.mp4
2.62MB
3. Setting up the working environment/2. Why Python and why Jupyter.mp4
13.63MB
3. Setting up the working environment/4. Installing Anaconda.mp4
9.39MB
3. Setting up the working environment/5. The Jupyter dashboard - part 1.mp4
5.59MB
3. Setting up the working environment/6. The Jupyter dashboard - part 2.mp4
10.92MB
3. Setting up the working environment/9. Installing the TensorFlow package.mp4
4.86MB
4. Minimal example - your first machine learning algorithm/1. Minimal example - part 1.mp4
6.54MB
4. Minimal example - your first machine learning algorithm/2. Minimal example - part 2.mp4
10.71MB
4. Minimal example - your first machine learning algorithm/3. Minimal example - part 3.mp4
9.76MB
4. Minimal example - your first machine learning algorithm/4. Minimal example - part 4.mp4
20.8MB
5. TensorFlow - An introduction/1. TensorFlow outline.mp4
14.47MB
5. TensorFlow - An introduction/2. TensorFlow intro.mp4
7.54MB
5. TensorFlow - An introduction/3. Types of file formats in TensorFlow.mp4
5.83MB
5. TensorFlow - An introduction/4. Inputs, outputs, targets, weights, biases - model layout.mp4
12.95MB
5. TensorFlow - An introduction/5. Loss function and gradient descent - introducing optimizers.mp4
9.7MB
5. TensorFlow - An introduction/6. Model output.mp4
14.33MB
6. Going deeper Introduction to deep neural networks/1. Layers.mp4
4.74MB
6. Going deeper Introduction to deep neural networks/2. What is a deep net.mp4
6.72MB
6. Going deeper Introduction to deep neural networks/3. Understanding deep nets in depth.mp4
13.41MB
6. Going deeper Introduction to deep neural networks/4. Why do we need non-linearities.mp4
8.96MB
6. Going deeper Introduction to deep neural networks/5. Activation functions.mp4
8.74MB
6. Going deeper Introduction to deep neural networks/6. Softmax activation.mp4
7.37MB
6. Going deeper Introduction to deep neural networks/7. Backpropagation.mp4
11.06MB
6. Going deeper Introduction to deep neural networks/8. Backpropagation - visual representation.mp4
6.85MB
8. Overfitting/1. Underfitting and overfitting.mp4
11.06MB
8. Overfitting/2. Underfitting and overfitting - classification.mp4
6.76MB
8. Overfitting/3. Training and validation.mp4
9.24MB
8. Overfitting/4. Training, validation, and test.mp4
7.44MB
8. Overfitting/5. N-fold cross validation.mp4
6.99MB
8. Overfitting/6. Early stopping.mp4
9.43MB
9. Initialization/1. Initialization - Introduction.mp4
8.04MB
9. Initialization/2. Types of simple initializations.mp4
5.62MB
9. Initialization/3. Xavier initialization.mp4
5.82MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统