首页 磁力链接怎么用

Neural Networks for Machine Learning

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
2013-1-31 18:52 2025-1-10 14:05 136 884.54 MB 78
二维码链接
Neural Networks for Machine Learning的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 5 - 4 - Convolutional nets for object recognition [17min].mp423.03MB
  2. 7 - 1 - Modeling sequences A brief overview.mp420.13MB
  3. 14 - 1 - Learning layers of features by stacking RBMs [17 min].mp420.07MB
  4. 14 - 5 - OPTIONAL VIDEO RBMs are infinite sigmoid belief nets [17 mins].mp419.44MB
  5. 5 - 3 - Convolutional nets for digit recognition [16 min].mp418.46MB
  6. 12 - 2 - OPTIONAL VIDEO More efficient ways to get the statistics [15 mins].mp416.93MB
  7. 2 - 5 - What perceptrons cant do [15 min].mp416.57MB
  8. 8 - 2 - Modeling character strings with multiplicative connections [14 mins].mp416.56MB
  9. 8 - 1 - A brief overview of Hessian Free optimization.mp416.24MB
  10. 16 - 3 - OPTIONAL Bayesian optimization of hyper-parameters [13 min].mp415.8MB
  11. 13 - 4 - The wake-sleep algorithm [13 min].mp415.68MB
  12. 10 - 1 - Why it helps to combine models [13 min].mp415.12MB
  13. 6 - 5 - Rmsprop Divide the gradient by a running average of its recent magnitude.mp415.12MB
  14. 1 - 1 - Why do we need machine learning [13 min].mp415.05MB
  15. 10 - 2 - Mixtures of Experts [13 min].mp414.98MB
  16. 6 - 2 - A bag of tricks for mini-batch gradient descent.mp414.9MB
  17. 13 - 2 - Belief Nets [13 min].mp414.86MB
  18. 11 - 1 - Hopfield Nets [13 min].mp414.65MB
  19. 4 - 1 - Learning to predict the next word [13 min].mp414.28MB
  20. 4 - 5 - Ways to deal with the large number of possible outputs [15 min].mp414.26MB
  21. 12 - 1 - Boltzmann machine learning [12 min].mp414.03MB
  22. 8 - 3 - Learning to predict the next character using HF [12 mins].mp413.92MB
  23. 16 - 1 - OPTIONAL Learning a joint model of images and captions [10 min].mp413.83MB
  24. 13 - 3 - Learning sigmoid belief nets [12 min].mp413.59MB
  25. 9 - 1 - Overview of ways to improve generalization [12 min].mp413.57MB
  26. 3 - 1 - Learning the weights of a linear neuron [12 min].mp413.52MB
  27. 3 - 4 - The backpropagation algorithm [12 min].mp413.35MB
  28. 11 - 5 - How a Boltzmann machine models data [12 min].mp413.28MB
  29. 11 - 2 - Dealing with spurious minima [11 min].mp412.77MB
  30. 12 - 3 - Restricted Boltzmann Machines [11 min].mp412.68MB
  31. 9 - 5 - The Bayesian interpretation of weight decay [11 min].mp412.27MB
  32. 9 - 4 - Introduction to the full Bayesian approach [12 min].mp412MB
  33. 13 - 1 - The ups and downs of back propagation [10 min].mp411.83MB
  34. 11 - 4 - Using stochastic units to improv search [11 min].mp411.76MB
  35. 15 - 5 - Learning binary codes for image retrieval [9 mins].mp411.51MB
  36. 11 - 3 - Hopfield nets with hidden units [10 min].mp411.31MB
  37. 14 - 2 - Discriminative learning for DBNs [9 mins].mp411.29MB
  38. 8 - 4 - Echo State Networks [9 min].mp411.28MB
  39. 14 - 4 - Modeling real-valued data with an RBM [10 mins].mp411.2MB
  40. 16 - 2 - OPTIONAL Hierarchical Coordinate Frames [10 mins].mp411.16MB
  41. 3 - 5 - Using the derivatives computed by backpropagation [10 min].mp411.15MB
  42. 15 - 3 - Deep auto encoders for document retrieval [8 mins].mp410.25MB
  43. 7 - 5 - Long-term Short-term-memory.mp410.23MB
  44. 14 - 3 - What happens during discriminative fine-tuning [8 mins].mp410.17MB
  45. 15 - 4 - Semantic Hashing [9 mins].mp49.99MB
  46. 1 - 2 - What are neural networks [8 min].mp49.76MB
  47. 6 - 3 - The momentum method.mp49.74MB
  48. 10 - 5 - Dropout [9 min].mp49.69MB
  49. 15 - 1 - From PCA to autoencoders [5 mins].mp49.68MB
  50. 6 - 1 - Overview of mini-batch gradient descent.mp49.6MB
  51. 12 - 5 - RBMs for collaborative filtering [8 mins].mp49.53MB
  52. 2 - 2 - Perceptrons The first generation of neural networks [8 min].mp49.39MB
  53. 1 - 3 - Some simple models of neurons [8 min].mp49.26MB
  54. 1 - 5 - Three types of learning [8 min].mp48.96MB
  55. 4 - 4 - Neuro-probabilistic language models [8 min].mp48.93MB
  56. 7 - 4 - Why it is difficult to train an RNN.mp48.89MB
  57. 2 - 1 - Types of neural network architectures [7 min].mp48.78MB
  58. 12 - 4 - An example of RBM learning [7 mins].mp48.71MB
  59. 9 - 3 - Using noise as a regularizer [7 min].mp48.48MB
  60. 10 - 3 - The idea of full Bayesian learning [7 min].mp48.39MB
  61. 15 - 6 - Shallow autoencoders for pre-training [7 mins].mp48.25MB
  62. 10 - 4 - Making full Bayesian learning practical [7 min].mp48.13MB
  63. 4 - 3 - Another diversion The softmax output function [7 min].mp48.03MB
  64. 9 - 2 - Limiting the size of the weights [6 min].mp47.36MB
  65. 7 - 2 - Training RNNs with back propagation.mp47.33MB
  66. 2 - 3 - A geometrical view of perceptrons [6 min].mp47.32MB
  67. 7 - 3 - A toy example of training an RNN.mp47.24MB
  68. 5 - 2 - Achieving viewpoint invariance [6 min].mp46.89MB
  69. 6 - 4 - Adaptive learning rates for each connection.mp46.63MB
  70. 1 - 4 - A simple example of learning [6 min].mp46.57MB
  71. 2 - 4 - Why the learning works [5 min].mp45.9MB
  72. 3 - 2 - The error surface for a linear neuron [5 min].mp45.89MB
  73. 5 - 1 - Why object recognition is difficult [5 min].mp45.37MB
  74. 4 - 2 - A brief diversion into cognitive science [4 min].mp45.31MB
  75. 15 - 2 - Deep auto encoders [4 mins].mp44.92MB
  76. 9 - 6 - MacKays quick and dirty method of setting weight costs [4 min].mp44.37MB
  77. 3 - 3 - Learning the weights of a logistic output neuron [4 min].mp44.37MB
  78. 16 - 4 - OPTIONAL The fog of progress [3 min].mp42.78MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统