首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
Neural Networks for Machine Learning
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
2013-1-31 18:52
2025-1-10 14:05
136
884.54 MB
78
磁力链接
magnet:?xt=urn:btih:C44EA3E669C895B7EF510B09CA044C03B500DC8F
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOkM0NEVBM0U2NjlDODk1QjdFRjUxMEIwOUNBMDQ0QzAzQjUwMERDOEZaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
Neural
Networks
for
Machine
Learning
文件列表
5 - 4 - Convolutional nets for object recognition [17min].mp4
23.03MB
7 - 1 - Modeling sequences A brief overview.mp4
20.13MB
14 - 1 - Learning layers of features by stacking RBMs [17 min].mp4
20.07MB
14 - 5 - OPTIONAL VIDEO RBMs are infinite sigmoid belief nets [17 mins].mp4
19.44MB
5 - 3 - Convolutional nets for digit recognition [16 min].mp4
18.46MB
12 - 2 - OPTIONAL VIDEO More efficient ways to get the statistics [15 mins].mp4
16.93MB
2 - 5 - What perceptrons cant do [15 min].mp4
16.57MB
8 - 2 - Modeling character strings with multiplicative connections [14 mins].mp4
16.56MB
8 - 1 - A brief overview of Hessian Free optimization.mp4
16.24MB
16 - 3 - OPTIONAL Bayesian optimization of hyper-parameters [13 min].mp4
15.8MB
13 - 4 - The wake-sleep algorithm [13 min].mp4
15.68MB
10 - 1 - Why it helps to combine models [13 min].mp4
15.12MB
6 - 5 - Rmsprop Divide the gradient by a running average of its recent magnitude.mp4
15.12MB
1 - 1 - Why do we need machine learning [13 min].mp4
15.05MB
10 - 2 - Mixtures of Experts [13 min].mp4
14.98MB
6 - 2 - A bag of tricks for mini-batch gradient descent.mp4
14.9MB
13 - 2 - Belief Nets [13 min].mp4
14.86MB
11 - 1 - Hopfield Nets [13 min].mp4
14.65MB
4 - 1 - Learning to predict the next word [13 min].mp4
14.28MB
4 - 5 - Ways to deal with the large number of possible outputs [15 min].mp4
14.26MB
12 - 1 - Boltzmann machine learning [12 min].mp4
14.03MB
8 - 3 - Learning to predict the next character using HF [12 mins].mp4
13.92MB
16 - 1 - OPTIONAL Learning a joint model of images and captions [10 min].mp4
13.83MB
13 - 3 - Learning sigmoid belief nets [12 min].mp4
13.59MB
9 - 1 - Overview of ways to improve generalization [12 min].mp4
13.57MB
3 - 1 - Learning the weights of a linear neuron [12 min].mp4
13.52MB
3 - 4 - The backpropagation algorithm [12 min].mp4
13.35MB
11 - 5 - How a Boltzmann machine models data [12 min].mp4
13.28MB
11 - 2 - Dealing with spurious minima [11 min].mp4
12.77MB
12 - 3 - Restricted Boltzmann Machines [11 min].mp4
12.68MB
9 - 5 - The Bayesian interpretation of weight decay [11 min].mp4
12.27MB
9 - 4 - Introduction to the full Bayesian approach [12 min].mp4
12MB
13 - 1 - The ups and downs of back propagation [10 min].mp4
11.83MB
11 - 4 - Using stochastic units to improv search [11 min].mp4
11.76MB
15 - 5 - Learning binary codes for image retrieval [9 mins].mp4
11.51MB
11 - 3 - Hopfield nets with hidden units [10 min].mp4
11.31MB
14 - 2 - Discriminative learning for DBNs [9 mins].mp4
11.29MB
8 - 4 - Echo State Networks [9 min].mp4
11.28MB
14 - 4 - Modeling real-valued data with an RBM [10 mins].mp4
11.2MB
16 - 2 - OPTIONAL Hierarchical Coordinate Frames [10 mins].mp4
11.16MB
3 - 5 - Using the derivatives computed by backpropagation [10 min].mp4
11.15MB
15 - 3 - Deep auto encoders for document retrieval [8 mins].mp4
10.25MB
7 - 5 - Long-term Short-term-memory.mp4
10.23MB
14 - 3 - What happens during discriminative fine-tuning [8 mins].mp4
10.17MB
15 - 4 - Semantic Hashing [9 mins].mp4
9.99MB
1 - 2 - What are neural networks [8 min].mp4
9.76MB
6 - 3 - The momentum method.mp4
9.74MB
10 - 5 - Dropout [9 min].mp4
9.69MB
15 - 1 - From PCA to autoencoders [5 mins].mp4
9.68MB
6 - 1 - Overview of mini-batch gradient descent.mp4
9.6MB
12 - 5 - RBMs for collaborative filtering [8 mins].mp4
9.53MB
2 - 2 - Perceptrons The first generation of neural networks [8 min].mp4
9.39MB
1 - 3 - Some simple models of neurons [8 min].mp4
9.26MB
1 - 5 - Three types of learning [8 min].mp4
8.96MB
4 - 4 - Neuro-probabilistic language models [8 min].mp4
8.93MB
7 - 4 - Why it is difficult to train an RNN.mp4
8.89MB
2 - 1 - Types of neural network architectures [7 min].mp4
8.78MB
12 - 4 - An example of RBM learning [7 mins].mp4
8.71MB
9 - 3 - Using noise as a regularizer [7 min].mp4
8.48MB
10 - 3 - The idea of full Bayesian learning [7 min].mp4
8.39MB
15 - 6 - Shallow autoencoders for pre-training [7 mins].mp4
8.25MB
10 - 4 - Making full Bayesian learning practical [7 min].mp4
8.13MB
4 - 3 - Another diversion The softmax output function [7 min].mp4
8.03MB
9 - 2 - Limiting the size of the weights [6 min].mp4
7.36MB
7 - 2 - Training RNNs with back propagation.mp4
7.33MB
2 - 3 - A geometrical view of perceptrons [6 min].mp4
7.32MB
7 - 3 - A toy example of training an RNN.mp4
7.24MB
5 - 2 - Achieving viewpoint invariance [6 min].mp4
6.89MB
6 - 4 - Adaptive learning rates for each connection.mp4
6.63MB
1 - 4 - A simple example of learning [6 min].mp4
6.57MB
2 - 4 - Why the learning works [5 min].mp4
5.9MB
3 - 2 - The error surface for a linear neuron [5 min].mp4
5.89MB
5 - 1 - Why object recognition is difficult [5 min].mp4
5.37MB
4 - 2 - A brief diversion into cognitive science [4 min].mp4
5.31MB
15 - 2 - Deep auto encoders [4 mins].mp4
4.92MB
9 - 6 - MacKays quick and dirty method of setting weight costs [4 min].mp4
4.37MB
3 - 3 - Learning the weights of a logistic output neuron [4 min].mp4
4.37MB
16 - 4 - OPTIONAL The fog of progress [3 min].mp4
2.78MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统