首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
Advanced Machine Learning Specialization
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2019-3-31 10:39
2024-12-29 14:41
122
2.85 GB
159
磁力链接
magnet:?xt=urn:btih:9a31f0c4690810429c38e93ef0b80ae51a3b6840
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjlhMzFmMGM0NjkwODEwNDI5YzM4ZTkzZWYwYjgwYWU1MWEzYjY4NDBaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
Advanced
Machine
Learning
Specialization
文件列表
3. bayesian-methods-in-machine-learning/01_introduction-to-bayesian-methods-conjugate-priors/02_conjugate-priors/02_conjugate-distributions.mp4
5.33MB
3. bayesian-methods-in-machine-learning/01_introduction-to-bayesian-methods-conjugate-priors/01_introduction-to-bayesian-methods/03_how-to-define-a-model.mp4
5.85MB
3. bayesian-methods-in-machine-learning/01_introduction-to-bayesian-methods-conjugate-priors/02_conjugate-priors/01_analytical-inference.mp4
7.62MB
2. competitive-data-science/11_ensembling/01_ensembling/01_introduction-into-ensemble-methods.mp4
8MB
3. bayesian-methods-in-machine-learning/01_introduction-to-bayesian-methods-conjugate-priors/02_conjugate-priors/04_example-bernoulli.mp4
8.03MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/02_latent-dirichlet-allocation/07_extensions-of-lda.mp4
9.17MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/01_variational-inference/01_why-approximate-inference.mp4
9.2MB
2. competitive-data-science/03_final-project-description/01_final-project/02_final-project-overview.mp4
9.31MB
3. bayesian-methods-in-machine-learning/06_gaussian-processes-bayesian-optimization/01_gaussian-processes-and-bayesian-optimization/07_application-of-bayesian-optimization.mp4
9.55MB
3. bayesian-methods-in-machine-learning/01_introduction-to-bayesian-methods-conjugate-priors/02_conjugate-priors/03_example-normal-precision.mp4
9.57MB
3. bayesian-methods-in-machine-learning/06_gaussian-processes-bayesian-optimization/01_gaussian-processes-and-bayesian-optimization/03_gp-for-machine-learning.mp4
9.63MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/02_latent-dirichlet-allocation/01_topic-modeling.mp4
9.7MB
3. bayesian-methods-in-machine-learning/01_introduction-to-bayesian-methods-conjugate-priors/01_introduction-to-bayesian-methods/02_bayesian-approach-to-statistics.mp4
9.77MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/01_variational-inference/04_variational-em-review.mp4
10.14MB
1. intro-to-deep-learning/01_introduction-to-optimization/02_linear-model-as-the-simplest-neural-network/03_gradient-descent.mp4
10.25MB
3. bayesian-methods-in-machine-learning/06_gaussian-processes-bayesian-optimization/01_gaussian-processes-and-bayesian-optimization/01_nonparametric-methods.mp4
10.54MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/02_latent-dirichlet-allocation/03_latent-dirichlet-allocation.mp4
10.56MB
1. intro-to-deep-learning/03_deep-learning-for-images/03_applications-of-cnns/01_learning-new-tasks-with-pre-trained-cnns.mp4
10.67MB
1. intro-to-deep-learning/01_introduction-to-optimization/03_regularization-in-machine-learning/02_model-regularization.mp4
10.75MB
2. competitive-data-science/01_introduction-recap/02_competition-mechanics/03_real-world-application-vs-competitions.mp4
11.02MB
2. competitive-data-science/10_advanced-feature-engineering-ii/01_advanced-features-ii/03_feature-interactions.mp4
11.11MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/01_variational-autoencoders/05_gradient-of-decoder.mp4
11.34MB
1. intro-to-deep-learning/01_introduction-to-optimization/04_stochastic-methods-for-optimization/01_stochastic-gradient-descent.mp4
11.4MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/02_expectation-maximization-algorithm/04_m-step-details.mp4
11.43MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/01_variational-autoencoders/01_scaling-variational-inference-unbiased-estimates.mp4
11.49MB
2. competitive-data-science/10_advanced-feature-engineering-ii/01_advanced-features-ii/01_statistics-and-distance-based-features.mp4
11.6MB
2. competitive-data-science/10_advanced-feature-engineering-ii/01_advanced-features-ii/04_t-sne.mp4
11.62MB
2. competitive-data-science/01_introduction-recap/04_software-hardware-requirements/01_software-hardware-requirements.mp4
11.75MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/02_latent-dirichlet-allocation/02_dirichlet-distribution.mp4
11.88MB
1. intro-to-deep-learning/04_unsupervised-representation-learning/01_intro-to-unsupervised-learning/02_autoencoders-101.mp4
11.9MB
2. competitive-data-science/11_ensembling/01_ensembling/02_bagging.mp4
11.94MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/02_expectation-maximization-algorithm/07_summary-of-expectation-maximization.mp4
12.1MB
2. competitive-data-science/04_exploratory-data-analysis/02_eda-examples/03_numerai-competition-eda.mp4
12.21MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/01_variational-autoencoders/06_log-derivative-trick.mp4
12.24MB
2. competitive-data-science/06_data-leakages/01_data-leakages/01_basic-data-leaks.mp4
12.28MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/01_latent-variable-models/02_probabilistic-clustering.mp4
12.4MB
2. competitive-data-science/04_exploratory-data-analysis/01_exploratory-data-analysis/03_building-intuition-about-the-data.mp4
12.7MB
1. intro-to-deep-learning/04_unsupervised-representation-learning/01_intro-to-unsupervised-learning/01_unsupervised-learning-what-it-is-and-why-bother.mp4
12.74MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/03_applications-and-examples/05_em-for-probabilistic-pca.mp4
12.98MB
2. competitive-data-science/07_metrics-optimization/01_metrics-optimization/06_general-approaches-for-metrics-optimization.mp4
13.12MB
2. competitive-data-science/10_advanced-feature-engineering-ii/01_advanced-features-ii/02_matrix-factorizations.mp4
13.16MB
2. competitive-data-science/04_exploratory-data-analysis/02_eda-examples/01_springleaf-competition-eda-i.mp4
13.18MB
2. competitive-data-science/12_competitions-go-through/01_competitions-go-through/03_springleaf-marketing-response.mp4
13.29MB
1. intro-to-deep-learning/02_introduction-to-neural-networks/01_multilayer-perceptron-or-the-basic-principles-of-deep-learning/01_multilayer-perceptron.mp4
13.4MB
2. competitive-data-science/04_exploratory-data-analysis/01_exploratory-data-analysis/02_exploratory-data-analysis.mp4
13.51MB
3. bayesian-methods-in-machine-learning/01_introduction-to-bayesian-methods-conjugate-priors/01_introduction-to-bayesian-methods/01_think-bayesian-statistics-review.mp4
13.55MB
1. intro-to-deep-learning/01_introduction-to-optimization/04_stochastic-methods-for-optimization/02_gradient-descent-extensions.mp4
13.63MB
1. intro-to-deep-learning/02_introduction-to-neural-networks/04_philosophy-of-deep-learning/02_deep-learning-as-a-language.mp4
13.66MB
2. competitive-data-science/01_introduction-recap/02_competition-mechanics/01_competition-mechanics.mp4
13.69MB
2. competitive-data-science/09_hyperparameter-optimization/01_hyperparameter-tuning/02_hyperparameter-tuning-i.mp4
13.73MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/02_variational-dropout/03_sparse-variational-dropout.mp4
13.76MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/02_variational-dropout/01_learning-with-priors.mp4
13.81MB
1. intro-to-deep-learning/02_introduction-to-neural-networks/01_multilayer-perceptron-or-the-basic-principles-of-deep-learning/02_training-a-neural-network.mp4
13.95MB
2. competitive-data-science/07_metrics-optimization/01_metrics-optimization/09_classification-metrics-optimization-ii.mp4
13.96MB
2. competitive-data-science/02_feature-preprocessing-and-generation-with-respect-to-models/01_feature-preprocessing-and-generation-with-respect-to-models/01_overview.mp4
14.08MB
3. bayesian-methods-in-machine-learning/06_gaussian-processes-bayesian-optimization/01_gaussian-processes-and-bayesian-optimization/02_gaussian-processes.mp4
14.14MB
2. competitive-data-science/05_validation/01_validation/02_validation-strategies.mp4
14.19MB
1. intro-to-deep-learning/01_introduction-to-optimization/03_regularization-in-machine-learning/01_overfitting-problem-and-model-validation.mp4
14.22MB
1. intro-to-deep-learning/05_deep-learning-for-sequences/02_modern-rnns/01_the-training-of-rnns-is-not-that-easy.mp4
14.51MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/01_variational-autoencoders/03_using-cnns-with-a-mixture-of-gaussians.mp4
14.61MB
1. intro-to-deep-learning/04_unsupervised-representation-learning/04_generative-adversarial-networks/01_generative-models-101.mp4
14.62MB
2. competitive-data-science/04_exploratory-data-analysis/01_exploratory-data-analysis/06_dataset-cleaning-and-other-things-to-check.mp4
14.7MB
2. competitive-data-science/07_metrics-optimization/01_metrics-optimization/08_classification-metrics-optimization-i.mp4
14.71MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/01_variational-autoencoders/07_reparameterization-trick.mp4
14.74MB
1. intro-to-deep-learning/02_introduction-to-neural-networks/01_multilayer-perceptron-or-the-basic-principles-of-deep-learning/03_backpropagation-primer.mp4
14.96MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/03_applications-and-examples/03_k-means-m-step.mp4
15.26MB
1. intro-to-deep-learning/04_unsupervised-representation-learning/02_more-autoencoders/02_autoencoder-applications-image-generation-data-visualization-more.mp4
15.33MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/02_variational-dropout/02_dropout-as-bayesian-procedure.mp4
15.47MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/05_example-of-gibbs-sampling.mp4
15.54MB
2. competitive-data-science/08_advanced-feature-engineering-i/01_mean-encodings/02_regularization.mp4
15.63MB
1. intro-to-deep-learning/02_introduction-to-neural-networks/02_tensorflow/03_gradients-optimization-in-tensorflow.mp4
15.65MB
2. competitive-data-science/07_metrics-optimization/01_metrics-optimization/02_motivation.mp4
15.76MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/09_markov-chain-monte-carlo-summary.mp4
15.83MB
1. intro-to-deep-learning/05_deep-learning-for-sequences/01_introduction-to-rnn/01_motivation-for-recurrent-layers.mp4
15.99MB
2. competitive-data-science/12_competitions-go-through/01_competitions-go-through/05_walmart-trip-type-classification.mp4
16.29MB
1. intro-to-deep-learning/02_introduction-to-neural-networks/04_philosophy-of-deep-learning/01_what-deep-learning-is-and-is-not.mp4
16.32MB
2. competitive-data-science/07_metrics-optimization/01_metrics-optimization/04_regression-metrics-review-ii.mp4
16.61MB
1. intro-to-deep-learning/03_deep-learning-for-images/03_applications-of-cnns/02_a-glimpse-of-other-computer-vision-tasks.mp4
16.86MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/06_metropolis-hastings.mp4
16.86MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/02_expectation-maximization-algorithm/01_jensens-inequality-kullback-leibler-divergence.mp4
16.87MB
2. competitive-data-science/08_advanced-feature-engineering-i/01_mean-encodings/01_concept-of-mean-encoding.mp4
16.92MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/03_applications-and-examples/02_k-means-from-probabilistic-perspective.mp4
16.93MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/01_latent-variable-models/03_gaussian-mixture-model.mp4
17.5MB
2. competitive-data-science/01_introduction-recap/01_welcome-to-how-to-win-a-data-science-competition/02_course-overview.mp4
17.6MB
1. intro-to-deep-learning/03_deep-learning-for-images/02_modern-cnns/02_overview-of-modern-cnn-architectures.mp4
17.7MB
2. competitive-data-science/02_feature-preprocessing-and-generation-with-respect-to-models/01_feature-preprocessing-and-generation-with-respect-to-models/04_datetime-and-coordinates.mp4
17.73MB
3. bayesian-methods-in-machine-learning/06_gaussian-processes-bayesian-optimization/01_gaussian-processes-and-bayesian-optimization/06_bayesian-optimization.mp4
18.17MB
2. competitive-data-science/01_introduction-recap/02_competition-mechanics/02_kaggle-overview-screencast.mp4
18.32MB
2. competitive-data-science/01_introduction-recap/03_recap-of-main-ml-algorithms/01_recap-of-main-ml-algorithms.mp4
18.32MB
1. intro-to-deep-learning/05_deep-learning-for-sequences/01_introduction-to-rnn/02_simple-rnn-and-backpropagation.mp4
18.36MB
1. intro-to-deep-learning/02_introduction-to-neural-networks/03_keras/01_keras-introduction.mp4
18.51MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/01_latent-variable-models/05_example-of-gmm-training.mp4
18.53MB
1. intro-to-deep-learning/05_deep-learning-for-sequences/02_modern-rnns/02_dealing-with-vanishing-and-exploding-gradients.mp4
18.65MB
2. competitive-data-science/05_validation/01_validation/01_validation-and-overfitting.mp4
18.82MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/01_latent-variable-models/04_training-gmm.mp4
18.87MB
2. competitive-data-science/06_data-leakages/01_data-leakages/02_leaderboard-probing-and-examples-of-rare-data-leaks.mp4
18.92MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/01_variational-autoencoders/02_modeling-a-distribution-of-images.mp4
18.98MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/02_expectation-maximization-algorithm/02_expectation-maximization-algorithm.mp4
19.01MB
1. intro-to-deep-learning/02_introduction-to-neural-networks/02_tensorflow/01_going-deeper-with-tensorflow.mp4
19.14MB
1. intro-to-deep-learning/01_introduction-to-optimization/02_linear-model-as-the-simplest-neural-network/01_linear-regression.mp4
19.18MB
2. competitive-data-science/06_data-leakages/01_data-leakages/03_expedia-challenge.mp4
19.49MB
2. competitive-data-science/11_ensembling/01_ensembling/06_ensembling-tips-and-tricks.mp4
19.55MB
1. intro-to-deep-learning/04_unsupervised-representation-learning/04_generative-adversarial-networks/02_generative-adversarial-networks.mp4
19.79MB
2. competitive-data-science/07_metrics-optimization/01_metrics-optimization/07_regression-metrics-optimization.mp4
19.95MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/11_bayesian-neural-networks.mp4
20.02MB
2. competitive-data-science/12_competitions-go-through/01_competitions-go-through/02_crowdflower-competition.mp4
20.14MB
1. intro-to-deep-learning/04_unsupervised-representation-learning/03_word-embeddings/01_natural-language-processing-primer.mp4
20.21MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/07_metropolis-hastings-choosing-the-critic.mp4
20.27MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/08_example-of-metropolis-hastings.mp4
20.49MB
1. intro-to-deep-learning/04_unsupervised-representation-learning/02_more-autoencoders/01_autoencoder-applications.mp4
20.53MB
2. competitive-data-science/02_feature-preprocessing-and-generation-with-respect-to-models/01_feature-preprocessing-and-generation-with-respect-to-models/05_handling-missing-values.mp4
20.93MB
3. bayesian-methods-in-machine-learning/06_gaussian-processes-bayesian-optimization/01_gaussian-processes-and-bayesian-optimization/05_nuances-of-gp.mp4
21.26MB
2. competitive-data-science/02_feature-preprocessing-and-generation-with-respect-to-models/02_feature-extraction-from-text-and-images/01_bag-of-words.mp4
21.3MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/01_latent-variable-models/01_latent-variable-models.mp4
21.31MB
2. competitive-data-science/11_ensembling/01_ensembling/05_stacknet.mp4
21.4MB
2. competitive-data-science/11_ensembling/01_ensembling/03_boosting.mp4
21.56MB
2. competitive-data-science/08_advanced-feature-engineering-i/01_mean-encodings/03_extensions-and-generalizations.mp4
21.68MB
2. competitive-data-science/02_feature-preprocessing-and-generation-with-respect-to-models/01_feature-preprocessing-and-generation-with-respect-to-models/03_categorical-and-ordinal-features.mp4
22.28MB
1. intro-to-deep-learning/04_unsupervised-representation-learning/04_generative-adversarial-networks/03_applications-of-adversarial-approach.mp4
22.79MB
1. intro-to-deep-learning/03_deep-learning-for-images/01_introduction-to-cnn/01_motivation-for-convolutional-layers.mp4
22.79MB
1. intro-to-deep-learning/01_introduction-to-optimization/02_linear-model-as-the-simplest-neural-network/02_linear-classification.mp4
22.82MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/03_applications-and-examples/04_probabilistic-pca.mp4
23.12MB
1. intro-to-deep-learning/03_deep-learning-for-images/01_introduction-to-cnn/02_our-first-cnn-architecture.mp4
23.28MB
2. competitive-data-science/11_ensembling/01_ensembling/04_stacking.mp4
23.3MB
2. competitive-data-science/09_hyperparameter-optimization/01_hyperparameter-tuning/03_hyperparameter-tuning-ii.mp4
23.79MB
2. competitive-data-science/04_exploratory-data-analysis/01_exploratory-data-analysis/05_visualizations.mp4
23.89MB
3. bayesian-methods-in-machine-learning/01_introduction-to-bayesian-methods-conjugate-priors/01_introduction-to-bayesian-methods/05_linear-regression.mp4
24.35MB
1. intro-to-deep-learning/05_deep-learning-for-sequences/02_modern-rnns/03_modern-rnns-lstm-and-gru.mp4
24.55MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/01_monte-carlo-estimation.mp4
25.13MB
2. competitive-data-science/09_hyperparameter-optimization/01_hyperparameter-tuning/04_hyperparameter-tuning-iii.mp4
25.68MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/02_expectation-maximization-algorithm/05_example-em-for-discrete-mixture-e-step.mp4
25.69MB
2. competitive-data-science/02_feature-preprocessing-and-generation-with-respect-to-models/02_feature-extraction-from-text-and-images/02_word2vec-cnn.mp4
25.84MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/02_latent-dirichlet-allocation/05_lda-e-step-z.mp4
26.09MB
2. competitive-data-science/04_exploratory-data-analysis/01_exploratory-data-analysis/04_exploring-anonymized-data.mp4
26.31MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/03_markov-chains.mp4
26.45MB
1. intro-to-deep-learning/04_unsupervised-representation-learning/03_word-embeddings/02_word-embeddings.mp4
26.45MB
2. competitive-data-science/07_metrics-optimization/01_metrics-optimization/03_regression-metrics-review-i.mp4
26.45MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/02_sampling-from-1-d-distributions.mp4
26.59MB
2. competitive-data-science/02_feature-preprocessing-and-generation-with-respect-to-models/01_feature-preprocessing-and-generation-with-respect-to-models/02_numeric-features.mp4
26.85MB
2. competitive-data-science/04_exploratory-data-analysis/02_eda-examples/02_springleaf-competition-eda-ii.mp4
27.56MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/10_mcmc-for-lda.mp4
27.63MB
3. bayesian-methods-in-machine-learning/01_introduction-to-bayesian-methods-conjugate-priors/01_introduction-to-bayesian-methods/04_example-thief-alarm.mp4
27.67MB
3. bayesian-methods-in-machine-learning/05_variational-autoencoder/01_variational-autoencoders/04_scaling-variational-em.mp4
27.69MB
1. intro-to-deep-learning/05_deep-learning-for-sequences/03_applications-of-rnns/01_practical-use-cases-for-rnns.mp4
29.11MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/02_expectation-maximization-algorithm/06_example-em-for-discrete-mixture-m-step.mp4
29.3MB
3. bayesian-methods-in-machine-learning/04_markov-chain-monte-carlo/01_mcmc/04_gibbs-sampling.mp4
29.32MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/03_applications-and-examples/01_general-em-for-gmm.mp4
29.47MB
2. competitive-data-science/05_validation/01_validation/04_data-splitting-strategies.mp4
30.05MB
3. bayesian-methods-in-machine-learning/02_expectation-maximization-algorithm/02_expectation-maximization-algorithm/03_e-step-details.mp4
30.4MB
3. bayesian-methods-in-machine-learning/06_gaussian-processes-bayesian-optimization/01_gaussian-processes-and-bayesian-optimization/04_derivation-of-main-formula.mp4
31.09MB
1. intro-to-deep-learning/03_deep-learning-for-images/02_modern-cnns/01_training-tips-and-tricks-for-deep-cnns.mp4
31.33MB
2. competitive-data-science/09_hyperparameter-optimization/02_tips-and-tricks/01_practical-guide.mp4
32.82MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/02_latent-dirichlet-allocation/04_lda-e-step-theta.mp4
33.36MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/01_variational-inference/03_example-ising-model.mp4
33.5MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/01_variational-inference/02_mean-field-approximation.mp4
35.44MB
2. competitive-data-science/12_competitions-go-through/01_competitions-go-through/04_microsoft-malware-classification-challenge.mp4
37.84MB
2. competitive-data-science/05_validation/01_validation/05_problems-occurring-during-validation.mp4
39.49MB
2. competitive-data-science/07_metrics-optimization/01_metrics-optimization/05_classification-metrics-review.mp4
39.59MB
3. bayesian-methods-in-machine-learning/03_variational-inference-latent-dirichlet-allocation/02_latent-dirichlet-allocation/06_lda-m-step-prediction.mp4
40.57MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统