首页 磁力链接怎么用

[CourseClub.Me] Coursera - Machine Learning Engineering for Production (MLOps) Specialization

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2021-11-4 21:51 2025-1-24 02:45 269 1.21 GB 125
二维码链接
[CourseClub.Me] Coursera - Machine Learning Engineering for Production (MLOps) Specialization的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 01 - Specialization overview.mp439.95MB
  2. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 02 - Welcome.mp420.35MB
  3. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 03 - Steps of an ML Project.mp49.04MB
  4. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 04 - Case study speech recognition.mp424.28MB
  5. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 05 - Course outline.mp46.44MB
  6. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 06 - Key challenges.mp425.62MB
  7. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 07 - Deployment patterns.mp420.05MB
  8. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 08 - Monitoring.mp418.25MB
  9. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 09 - Pipeline monitoring.mp416.17MB
  10. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 10 - Modeling overview.mp49.4MB
  11. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 11 - Key challenges.mp48.98MB
  12. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 12 - Why low average error isn't good enough.mp40B
  13. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 13 - Establish a baseline.mp415.99MB
  14. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 14 - Tips for getting started.mp411.07MB
  15. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 15 - Error analysis example.mp413.74MB
  16. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 16 - Prioritizing what to work on.mp410.23MB
  17. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 17 - Skewed datastes.mp420.11MB
  18. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 18 - Performance auditing.mp415.76MB
  19. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 19 - Data-centric AI development.mp47.52MB
  20. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 20 - A useful picture of data augmentation.mp40B
  21. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 21 - Data augmentation.mp416.45MB
  22. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 22 - Can adding data hurt.mp414.57MB
  23. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 23 - Adding features.mp418.1MB
  24. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 24 - Experiment tracking.mp48.86MB
  25. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 25 - From big data to good data.mp48.85MB
  26. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 26 - Why is data definition hard.mp410.06MB
  27. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 27 - More label ambiguity examples.mp414.75MB
  28. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 28 - Major types of data problems.mp420MB
  29. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 29 - Small data and label consistency.mp415.3MB
  30. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 30 - Improving label consistency.mp416.04MB
  31. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 31 - Human level performance (HLP).mp418.51MB
  32. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 32 - Raising HLP.mp421.81MB
  33. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 33 - Obtaining data.mp420.71MB
  34. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 34 - Data pipeline.mp410.66MB
  35. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 35 - Meta-data, data provenance and lineage.mp40B
  36. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 36 - Balanced train dev test splits.mp410.81MB
  37. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 37 - What is scoping.mp48.11MB
  38. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 38 - Scoping process.mp413.49MB
  39. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 39 - Diligence on feasibility and value.mp423.23MB
  40. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 40 - Diligence on value.mp413.19MB
  41. 1. Introduction to Machine Learning in Production/introduction-to-machine-learning-in-production - 41 - Milestones and resourcing.mp44.78MB
  42. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 01 - Specialization overview.mp439.95MB
  43. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 02 - Course Overview.mp416.02MB
  44. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 03 - Overview.mp418.03MB
  45. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 04 - ML Pipelines.mp410.2MB
  46. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 05 - Importance of Data.mp412.61MB
  47. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 06 - Example Application Suggesting Runs.mp410.98MB
  48. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 07 - Responsible Data Security, Privacy & Fairness.mp40B
  49. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 08 - Case Study Degraded Model Performance.mp40B
  50. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 09 - Data and Concept Change in Production ML.mp40B
  51. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 10 - Process Feedback and Human Labeling.mp414.56MB
  52. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 11 - Detecting Data Issues.mp412.44MB
  53. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 12 - TensorFlow Data Validation.mp48.82MB
  54. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 13 - Introduction to Preprocessing.mp410.05MB
  55. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 14 - Preprocessing Operations.mp411.82MB
  56. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 15 - Feature Engineering Techniques.mp420.32MB
  57. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 16 - Feature Crosses.mp45.28MB
  58. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 17 - Preprocessing Data at Scale.mp417.63MB
  59. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 18 - TensorFlow Transform.mp417.53MB
  60. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 19 - Hello World with tf.Transform.mp410.38MB
  61. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 20 - Feature Spaces.mp46.32MB
  62. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 21 - Feature Selection.mp45.71MB
  63. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 22 - Filter Methods.mp48.01MB
  64. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 23 - Wrapper Methods.mp47.26MB
  65. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 24 - Embedded Methods.mp47.49MB
  66. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 25 - Data Journey.mp410.6MB
  67. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 26 - Introduction to ML Metadata.mp413.16MB
  68. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 27 - ML Metadata in Action.mp46.19MB
  69. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 28 - Schema Development.mp46.1MB
  70. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 29 - Schema Environments.mp45.08MB
  71. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 30 - Feature Stores.mp410.96MB
  72. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 31 - Data Warehouse.mp45.92MB
  73. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 32 - Data Lakes.mp44.75MB
  74. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 33 - Semi-supervised Learning.mp46.49MB
  75. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 34 - Active Learning.mp45.97MB
  76. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 35 - Weak Supervision.mp46.95MB
  77. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 36 - Data Augmentation.mp46.17MB
  78. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 37 - Time Series.mp412.65MB
  79. 2. Machine Learning Data Lifecycle in Production/machine-learning-data-lifecycle-in-production - 38 - Sensors and Signals.mp44.34MB
  80. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 01 - Course Overview.mp410.47MB
  81. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 02 - Hyperparameter Tuning.mp46.59MB
  82. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 03 - Keras Autotuner Demo.mp49.08MB
  83. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 04 - Intro to AutoML.mp47.9MB
  84. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 05 - Understanding Search Spaces.mp42.68MB
  85. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 06 - Search Strategies.mp46.78MB
  86. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 07 - Measuring AutoML Efficacy.mp45.37MB
  87. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 08 - AutoML on the Cloud.mp411.84MB
  88. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 09 - Assignment Setup.mp43.22MB
  89. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 10 - Dimensionality Effect on Performance.mp40B
  90. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 11 - Curse of Dimensionality.mp413.83MB
  91. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 12 - Curse of Dimensionality an Example.mp40B
  92. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 13 - Manual Dimensionality Reduction.mp40B
  93. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 15 - Algorithmic Dimensionality Reduction.mp40B
  94. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 16 - Principal Components Analysis.mp40B
  95. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 17 - Other Techniques.mp410.86MB
  96. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 18 - Mobile, IoT, and Similar Use Cases.mp40B
  97. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 19 - Benefits and Process of Quantization.mp40B
  98. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 20 - Post Training Quantization.mp48.65MB
  99. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 21 - Quantization Aware Training.mp46.26MB
  100. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 22 - Pruning.mp420.42MB
  101. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 23 - Distributed Training.mp415.94MB
  102. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 24 - High-Performance Ingestion.mp415.77MB
  103. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 26 - Teacher and Student Networks.mp44.35MB
  104. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 27 - Knowledge Distillation Techniques.mp40B
  105. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 29 - Model Performance Analysis.mp415.69MB
  106. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 31 - TFMA in Practice.mp45.52MB
  107. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 32 - Model Debugging Overview.mp44.72MB
  108. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 33 - Benchmark Models.mp41.57MB
  109. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 35 - Adversarial Attack Demo.mp411.36MB
  110. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 36 - Residual Analysis.mp43.09MB
  111. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 37 - Model Remediation.mp46.21MB
  112. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 38 - Fairness.mp45.27MB
  113. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 39 - Measuring Fairness.mp48.01MB
  114. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 40 - Continuous Evaluation and Monitoring.mp40B
  115. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 41 - Explainable AI.mp411.59MB
  116. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 42 - Model Interpretation Methods.mp413.01MB
  117. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 43 - Intrinsically Interpretable Models.mp40B
  118. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 44 - Model Agnostic Methods.mp42.46MB
  119. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 45 - Partial Dependence Plots.mp47.41MB
  120. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 46 - Permutation Feature Importance.mp40B
  121. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 47 - Shapley Values.mp410.21MB
  122. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 48 - SHapley Additive exPlanations (SHAP).mp40B
  123. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 49 - Testing Concept Activation Vectors.mp40B
  124. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 50 - LIME.mp42.11MB
  125. 3. Machine Learning Modeling Pipelines in Production/machine-learning-modeling-pipelines-in-production - 51 - AI Explanations.mp410.35MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统