首页 磁力链接怎么用

[DesireCourse.Net] Udemy - Machine Learning Basics Classification models in Python

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2021-10-8 07:08 2024-12-25 01:56 258 2.15 GB 52
二维码链接
[DesireCourse.Net] Udemy - Machine Learning Basics Classification models in Python的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Introduction/1. Welcome to the course!.mp417.6MB
  2. 2. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4123.83MB
  3. 2. Introduction to Machine Learning/2. Building a Machine Learning model.mp445.27MB
  4. 3. Basics of Statistics/1. Types of Data.mp425.86MB
  5. 3. Basics of Statistics/2. Types of Statistics.mp413.24MB
  6. 3. Basics of Statistics/3. Describing data Graphically.mp482.16MB
  7. 3. Basics of Statistics/4. Measures of Centers.mp445.69MB
  8. 3. Basics of Statistics/6. Measures of Dispersion.mp428.38MB
  9. 4. Setting up Python and Jupyter Notebook/1. Installing Python and Anaconda.mp418.64MB
  10. 4. Setting up Python and Jupyter Notebook/2. Opening Jupyter Notebook.mp473.06MB
  11. 4. Setting up Python and Jupyter Notebook/3. Introduction to Jupyter.mp451.28MB
  12. 4. Setting up Python and Jupyter Notebook/4. Arithmetic operators in Python Python Basics.mp415.97MB
  13. 4. Setting up Python and Jupyter Notebook/5. Strings in Python Python Basics.mp480.59MB
  14. 4. Setting up Python and Jupyter Notebook/6. Lists, Tuples and Directories Python Basics.mp473.66MB
  15. 4. Setting up Python and Jupyter Notebook/7. Working with Numpy Library of Python.mp454.1MB
  16. 4. Setting up Python and Jupyter Notebook/8. Working with Pandas Library of Python.mp456.4MB
  17. 4. Setting up Python and Jupyter Notebook/9. Working with Seaborn Library of Python.mp448.86MB
  18. 5. Data Preprocessing/1. Gathering Business Knowledge.mp425.13MB
  19. 5. Data Preprocessing/10. Outlier treatment in Python.mp458.44MB
  20. 5. Data Preprocessing/12. Missing Value Imputation.mp427.56MB
  21. 5. Data Preprocessing/13. Missing Value Imputation in Python.mp427.65MB
  22. 5. Data Preprocessing/15. Seasonality in Data.mp420.88MB
  23. 5. Data Preprocessing/16. Variable Transformation.mp415.29MB
  24. 5. Data Preprocessing/17. Variable transformation and Deletion in Python.mp435.58MB
  25. 5. Data Preprocessing/19. Dummy variable creation Handling qualitative data.mp440.6MB
  26. 5. Data Preprocessing/2. Data Exploration.mp423.4MB
  27. 5. Data Preprocessing/20. Dummy variable creation in Python.mp433.87MB
  28. 5. Data Preprocessing/3. The Dataset and the Data Dictionary.mp487.62MB
  29. 5. Data Preprocessing/4. Data Import in Python.mp425.49MB
  30. 5. Data Preprocessing/6. Univariate analysis and EDD.mp427.31MB
  31. 5. Data Preprocessing/7. EDD in Python.mp497.09MB
  32. 5. Data Preprocessing/9. Outlier Treatment.mp427.77MB
  33. 6. Classification Models/1. Three Classifiers and the problem statement.mp422.93MB
  34. 6. Classification Models/10. Confusion Matrix.mp426.65MB
  35. 6. Classification Models/11. Making Confusion Matrix in Python.mp464.71MB
  36. 6. Classification Models/12. Evaluating performance of model.mp442.79MB
  37. 6. Classification Models/13. Evaluating model performance in Python.mp411.77MB
  38. 6. Classification Models/15. Linear Discriminant Analysis.mp448.68MB
  39. 6. Classification Models/16. LDA in Python.mp414.38MB
  40. 6. Classification Models/18. Test-Train Split.mp445.69MB
  41. 6. Classification Models/19. Test-Train Split in Python.mp443.1MB
  42. 6. Classification Models/2. Why can't we use Linear Regression.mp420.4MB
  43. 6. Classification Models/21. K-Nearest Neighbors classifier.mp483.57MB
  44. 6. Classification Models/22. K-Nearest Neighbors in Python Part 1.mp445.85MB
  45. 6. Classification Models/23. K-Nearest Neighbors in Python Part 2.mp451.98MB
  46. 6. Classification Models/25. Understanding the results of classification models.mp445.98MB
  47. 6. Classification Models/26. Summary of the three models.mp425.25MB
  48. 6. Classification Models/3. Logistic Regression.mp439.11MB
  49. 6. Classification Models/4. Training a Simple Logistic Model in Python.mp461.19MB
  50. 6. Classification Models/6. Result of Simple Logistic Regression.mp431.15MB
  51. 6. Classification Models/7. Logistic with multiple predictors.mp49.99MB
  52. 6. Classification Models/8. Training multiple predictor Logistic model in Python.mp434.02MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统