首页 磁力链接怎么用

[FreeCoursesOnline.Me] [Packt] Troubleshooting Python Deep Learning [FCO]

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2019-8-18 15:44 2025-1-11 03:46 127 487.39 MB 44
二维码链接
[FreeCoursesOnline.Me] [Packt] Troubleshooting Python Deep Learning [FCO]的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 1. Solutions to Convolutional Neural Network Problems – Part One_/01.The Course Overview.mp437.64MB
  2. 1. Solutions to Convolutional Neural Network Problems – Part One_/02.Concatenate Two CNNs Correctly.mp473.99MB
  3. 1. Solutions to Convolutional Neural Network Problems – Part One_/03.Splitting Trained Model.mp413.19MB
  4. 1. Solutions to Convolutional Neural Network Problems – Part One_/04.Resolving fit_generator Errors.mp47.63MB
  5. 1. Solutions to Convolutional Neural Network Problems – Part One_/05.Model Object Has No Attribute load_model Keras.mp43.19MB
  6. 1. Solutions to Convolutional Neural Network Problems – Part One_/06.High val_acc, But Low Accuracy in Practice.mp411.03MB
  7. 1. Solutions to Convolutional Neural Network Problems – Part One_/07.Error in Adding a Dense Layer.mp44.83MB
  8. 1. Solutions to Convolutional Neural Network Problems – Part One_/08.Model with Multiple Outputs Errors.mp43.86MB
  9. 1. Solutions to Convolutional Neural Network Problems – Part One_/09.Model That Uses Dropout Is Still Overfitting.mp48.09MB
  10. 2. Solutions to Convolutional Neural Network Problems – Part Two_/10.When the Value Error Input 0 Is Incompatible with Layer conv2d_1.mp46.42MB
  11. 2. Solutions to Convolutional Neural Network Problems – Part Two_/11.Interpreting kernel_size Notation in CNNs.mp49.92MB
  12. 2. Solutions to Convolutional Neural Network Problems – Part Two_/12.Choosing Last Layer’s Activation Function in CNN.mp47.53MB
  13. 2. Solutions to Convolutional Neural Network Problems – Part Two_/13.Using Validation Accuracy.mp48.82MB
  14. 2. Solutions to Convolutional Neural Network Problems – Part Two_/14.Error When Using CNN to Classify Text.mp48.3MB
  15. 2. Solutions to Convolutional Neural Network Problems – Part Two_/15.Kernel Weight Initialization in CNN Model.mp45.36MB
  16. 2. Solutions to Convolutional Neural Network Problems – Part Two_/16.Common Problems When Using Pre-Trained CNN Models.mp47.6MB
  17. 2. Solutions to Convolutional Neural Network Problems – Part Two_/17.Shape Error When Training CIFAR-10 Dataset on CNN.mp48.68MB
  18. 3. Solutions to Recurrent Neural Network Problems_/18.Building an RNN Model in Keras.mp48.12MB
  19. 3. Solutions to Recurrent Neural Network Problems_/19.Wrong Input - ValueError – Error When Checking Input.mp413.17MB
  20. 3. Solutions to Recurrent Neural Network Problems_/20.Correct Text Preparation for Machine Translation.mp410.45MB
  21. 3. Solutions to Recurrent Neural Network Problems_/21.Handling Invalid Input Shape Error.mp47.89MB
  22. 3. Solutions to Recurrent Neural Network Problems_/22.Mapping Series of Vectors to a Single Vector.mp47.01MB
  23. 3. Solutions to Recurrent Neural Network Problems_/23.Resolving a Bad Output from RNN While Generating a Simple Sequence.mp46.26MB
  24. 3. Solutions to Recurrent Neural Network Problems_/24.Preparing Data Correctly for Time Series Prediction.mp49.66MB
  25. 3. Solutions to Recurrent Neural Network Problems_/25.How to Enable Stateful RNN.mp46.99MB
  26. 4.Solutions to LSTM Recurrent Neural Networks Problems/26.Stacking Multiple LSTM in Keras TypeError - Call() Got an Unexpected Keyword Argument 'return_sequences'.mp49.61MB
  27. 4.Solutions to LSTM Recurrent Neural Networks Problems/27.Working with Different Lengths of Input and Output Sequences.mp415.61MB
  28. 4.Solutions to LSTM Recurrent Neural Networks Problems/28.How to Use Stacked LSTMs.mp46.13MB
  29. 4.Solutions to LSTM Recurrent Neural Networks Problems/29.Using CNN-LSTM for Time Series Prediction.mp48.48MB
  30. 4.Solutions to LSTM Recurrent Neural Networks Problems/30.Solving LSTM Underfitting on Time Series Problem.mp46.03MB
  31. 4.Solutions to LSTM Recurrent Neural Networks Problems/31.Using LSTM for Multi-Value Prediction.mp45.29MB
  32. 4.Solutions to LSTM Recurrent Neural Networks Problems/32.How To Do Text Classification with LSTM.mp411.39MB
  33. 4.Solutions to LSTM Recurrent Neural Networks Problems/33.Data Preparation for Seq2Seq Learning.mp47.7MB
  34. 5. Troubleshooting Models with scikit-learn_/34.LabelBinarizer Returns Vector When There Are Two Classes.mp47.95MB
  35. 5. Troubleshooting Models with scikit-learn_/35.Handling Missing Values.mp412.64MB
  36. 5. Troubleshooting Models with scikit-learn_/36.Evaluating Deep Learning Models Using Additional Metrics.mp48.7MB
  37. 5. Troubleshooting Models with scikit-learn_/37.Fixing Warning Messages.mp410.3MB
  38. 5. Troubleshooting Models with scikit-learn_/38.Generating Test Datasets.mp46.9MB
  39. 5. Troubleshooting Models with scikit-learn_/39.Normalizing and Standardizing the Data.mp46.84MB
  40. 5. Troubleshooting Models with scikit-learn_/40.Preparing Text for Use with Deep Learning Models.mp48.18MB
  41. 6. Solving NumPy Problems_/41.Converting a 2D Matrix to a One-Hot Encoded Matrix.mp48.55MB
  42. 6. Solving NumPy Problems_/42.Reshaping a 2D NumPy Array to 3D Array.mp44.84MB
  43. 6. Solving NumPy Problems_/43.Fix load.npy Error in Python3.mp416.54MB
  44. 6. Solving NumPy Problems_/44.Turn ND Matrix Into 1D Vector.mp430.07MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统