首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[DesireCourse.Net] Udemy - A Complete Guide on TensorFlow 2.0 using Keras API
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2020-6-20 14:05
2024-12-30 15:00
242
5.12 GB
120
磁力链接
magnet:?xt=urn:btih:68dba62516bd27919d44132ba381236d8abfa764
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjY4ZGJhNjI1MTZiZDI3OTE5ZDQ0MTMyYmEzODEyMzZkOGFiZmE3NjRaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
DesireCourse
Net
Udemy
-
A
Complete
Guide
on
TensorFlow
2
0
using
Keras
API
文件列表
1. Introduction/1. Welcome to the TensorFlow 2.0 course! Discover its structure and the TF toolkit..mp4
146.29MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/1. Project Setup.mp4
10.06MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/2. Initial dataset preprocessing.mp4
34.99MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/3. Dataset metadata.mp4
20.93MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/4. Preprocessing function.mp4
21.12MB
10. Dataset Preprocessing with TensorFlow Transform (TFT)/5. Dataset preprocessing pipeline.mp4
73.96MB
11. Fashion API with Flask and TensorFlow 2.0/1. Project Setup.mp4
36.74MB
11. Fashion API with Flask and TensorFlow 2.0/2. Importing project dependencies.mp4
11.91MB
11. Fashion API with Flask and TensorFlow 2.0/3. Loading a pre-trained model.mp4
20.49MB
11. Fashion API with Flask and TensorFlow 2.0/4. Defining the Flask application.mp4
12.38MB
11. Fashion API with Flask and TensorFlow 2.0/5. Creating classify function.mp4
53.14MB
11. Fashion API with Flask and TensorFlow 2.0/6. Starting the Flask application.mp4
27.62MB
11. Fashion API with Flask and TensorFlow 2.0/7. Sending API requests over internet to the model.mp4
35.02MB
12. Image Classification API with TensorFlow Serving/1. What is the TensorFlow Serving.mp4
24.47MB
12. Image Classification API with TensorFlow Serving/10. Sending the POST request to a specific model.mp4
9.64MB
12. Image Classification API with TensorFlow Serving/2. TensorFlow Serving architecture.mp4
19.51MB
12. Image Classification API with TensorFlow Serving/3. Project setup.mp4
25.53MB
12. Image Classification API with TensorFlow Serving/4. Dataset preprocessing.mp4
23.72MB
12. Image Classification API with TensorFlow Serving/5. Defining, training and evaluating a model.mp4
23.33MB
12. Image Classification API with TensorFlow Serving/6. Saving the model for production.mp4
25.43MB
12. Image Classification API with TensorFlow Serving/7. Serving the TensorFlow 2.0 Model.mp4
27.91MB
12. Image Classification API with TensorFlow Serving/8. Creating a JSON object.mp4
23.59MB
12. Image Classification API with TensorFlow Serving/9. Sending the first POST request to the model.mp4
27.32MB
13. TensorFlow Lite Prepare a model for a mobile device/1. What is the TensorFlow Lite.mp4
13.97MB
13. TensorFlow Lite Prepare a model for a mobile device/2. Project setup.mp4
8.05MB
13. TensorFlow Lite Prepare a model for a mobile device/3. Dataset preprocessing.mp4
28.77MB
13. TensorFlow Lite Prepare a model for a mobile device/4. Building a model.mp4
14.84MB
13. TensorFlow Lite Prepare a model for a mobile device/5. Training, evaluating the model.mp4
15.2MB
13. TensorFlow Lite Prepare a model for a mobile device/6. Saving the model.mp4
9.41MB
13. TensorFlow Lite Prepare a model for a mobile device/7. TensorFlow Lite Converter.mp4
6.29MB
13. TensorFlow Lite Prepare a model for a mobile device/8. Converting the model to a TensorFlow Lite model.mp4
4.93MB
13. TensorFlow Lite Prepare a model for a mobile device/9. Saving the converted model.mp4
8.68MB
14. Distributed Training with TensorFlow 2.0/1. What is the Distributed Training.mp4
11.09MB
14. Distributed Training with TensorFlow 2.0/2. Project Setup.mp4
9.08MB
14. Distributed Training with TensorFlow 2.0/3. Dataset preprocessing.mp4
25.59MB
14. Distributed Training with TensorFlow 2.0/4. Defining a non-distributed model (normal CNN model).mp4
14.05MB
14. Distributed Training with TensorFlow 2.0/5. Setting up a distributed strategy.mp4
7.4MB
14. Distributed Training with TensorFlow 2.0/6. Defining a distributed model.mp4
12.49MB
14. Distributed Training with TensorFlow 2.0/7. Final evaluation - Speed test normal model vs distributed model.mp4
28.42MB
15. Annex 1 - Artificial Neural Networks Theory/1. Plan of Attack.mp4
11.83MB
15. Annex 1 - Artificial Neural Networks Theory/2. The Neuron.mp4
98.69MB
15. Annex 1 - Artificial Neural Networks Theory/3. The Activation Function.mp4
45.33MB
15. Annex 1 - Artificial Neural Networks Theory/4. How do Neural Networks Work.mp4
81.81MB
15. Annex 1 - Artificial Neural Networks Theory/5. How do Neural Networks Learn.mp4
112.16MB
15. Annex 1 - Artificial Neural Networks Theory/6. Gradient Descent.mp4
60.57MB
15. Annex 1 - Artificial Neural Networks Theory/7. Stochastic Gradient Descent.mp4
67.24MB
15. Annex 1 - Artificial Neural Networks Theory/8. Backpropagation.mp4
43.13MB
16. Annex 2 - Convolutional Neural Networks Theory/1. Plan of Attack.mp4
15.79MB
16. Annex 2 - Convolutional Neural Networks Theory/2. What are Convolutional Neural Networks.mp4
107.87MB
16. Annex 2 - Convolutional Neural Networks Theory/3. Step 1 - Convolution.mp4
97.84MB
16. Annex 2 - Convolutional Neural Networks Theory/4. Step 1 Bis - ReLU Layer.mp4
53.37MB
16. Annex 2 - Convolutional Neural Networks Theory/5. Step 2 - Max Pooling.mp4
140.21MB
16. Annex 2 - Convolutional Neural Networks Theory/6. Step 3 - Flattening.mp4
7.92MB
16. Annex 2 - Convolutional Neural Networks Theory/7. Step 4 - Full Connection.mp4
194.15MB
16. Annex 2 - Convolutional Neural Networks Theory/8. Summary.mp4
30.32MB
16. Annex 2 - Convolutional Neural Networks Theory/9. Softmax & Cross-Entropy.mp4
117.84MB
17. Annex 3 - Recurrent Neural Networks Theory/1. Plan of Attack.mp4
10.48MB
17. Annex 3 - Recurrent Neural Networks Theory/2. What are Recurrent Neural Networks.mp4
120.95MB
17. Annex 3 - Recurrent Neural Networks Theory/3. Vanishing Gradient.mp4
111MB
17. Annex 3 - Recurrent Neural Networks Theory/4. LSTMs.mp4
136.42MB
17. Annex 3 - Recurrent Neural Networks Theory/5. LSTM Practical Intuition.mp4
187.41MB
17. Annex 3 - Recurrent Neural Networks Theory/6. LSTM Variations.mp4
20.13MB
2. TensorFlow 2.0 Basics/1. From TensorFlow 1.x to TensorFlow 2.0.mp4
114.8MB
2. TensorFlow 2.0 Basics/2. Constants, Variables, Tensors.mp4
71.34MB
2. TensorFlow 2.0 Basics/3. Operations with Tensors.mp4
49.26MB
2. TensorFlow 2.0 Basics/4. Strings.mp4
40.24MB
3. Artificial Neural Networks/1. Project Setup.mp4
59.26MB
3. Artificial Neural Networks/2. Data Preprocessing.mp4
61.77MB
3. Artificial Neural Networks/3. Building the Artificial Neural Network.mp4
60.44MB
3. Artificial Neural Networks/4. Training the Artificial Neural Network.mp4
48.52MB
3. Artificial Neural Networks/5. Evaluating the Artificial Neural Network.mp4
31.45MB
4. Convolutional Neural Networks/1. Project Setup & Data Preprocessing.mp4
47.37MB
4. Convolutional Neural Networks/2. Building the Convolutional Neural Network.mp4
88.18MB
4. Convolutional Neural Networks/3. Training and Evaluating the Convolutional Neural Network.mp4
58.24MB
5. Recurrent Neural Networks/1. Project Setup & Data Preprocessing.mp4
46.44MB
5. Recurrent Neural Networks/2. Building the Recurrent Neural Network.mp4
40.03MB
5. Recurrent Neural Networks/3. Training and Evaluating the Recurrent Neural Network.mp4
48.87MB
6. Transfer Learning and Fine Tuning/1. What is Transfer Learning.mp4
46.49MB
6. Transfer Learning and Fine Tuning/10. Transfer Learning.mp4
16.83MB
6. Transfer Learning and Fine Tuning/11. Evaluating Transfer Learning results.mp4
9.37MB
6. Transfer Learning and Fine Tuning/12. Fine Tuning model definition.mp4
24.6MB
6. Transfer Learning and Fine Tuning/13. Compiling the Fine Tuning model.mp4
6.41MB
6. Transfer Learning and Fine Tuning/14. Fine Tuning.mp4
10.18MB
6. Transfer Learning and Fine Tuning/15. Evaluating Fine Tuning results.mp4
9.01MB
6. Transfer Learning and Fine Tuning/2. Project Setup.mp4
49.38MB
6. Transfer Learning and Fine Tuning/3. Dataset preprocessing.mp4
31.84MB
6. Transfer Learning and Fine Tuning/4. Loading the MobileNet V2 model.mp4
17.84MB
6. Transfer Learning and Fine Tuning/5. Freezing the pre-trained model.mp4
6.07MB
6. Transfer Learning and Fine Tuning/6. Adding a custom head to the pre-trained model.mp4
19.69MB
6. Transfer Learning and Fine Tuning/7. Defining the transfer learning model.mp4
13.2MB
6. Transfer Learning and Fine Tuning/8. Compiling the Transfer Learning model.mp4
12.59MB
6. Transfer Learning and Fine Tuning/9. Image Data Generators.mp4
32.56MB
7. Deep Reinforcement Learning Theory/1. What is Reinforcement Learning.mp4
68.54MB
7. Deep Reinforcement Learning Theory/2. The Bellman Equation.mp4
95.06MB
7. Deep Reinforcement Learning Theory/3. Markov Decision Process (MDP).mp4
94.29MB
7. Deep Reinforcement Learning Theory/4. Q-Learning Intuition.mp4
79.08MB
7. Deep Reinforcement Learning Theory/5. Temporal Difference.mp4
97.1MB
7. Deep Reinforcement Learning Theory/6. Deep Q-Learning Intuition - Step 1.mp4
99.92MB
7. Deep Reinforcement Learning Theory/7. Deep Q-Learning Intuition - Step 2.mp4
43.07MB
7. Deep Reinforcement Learning Theory/8. Experience Replay.mp4
114.74MB
7. Deep Reinforcement Learning Theory/9. Action Selection Policies.mp4
136.84MB
8. Deep Reinforcement Learning for Stock Market trading/1. Project Setup.mp4
11.89MB
8. Deep Reinforcement Learning for Stock Market trading/10. Defining the model.mp4
11.87MB
8. Deep Reinforcement Learning for Stock Market trading/11. Training loop - Step 1.mp4
28.12MB
8. Deep Reinforcement Learning for Stock Market trading/12. Training loop - Step 2.mp4
54.18MB
8. Deep Reinforcement Learning for Stock Market trading/2. AI Trader - Step 1.mp4
27.2MB
8. Deep Reinforcement Learning for Stock Market trading/3. AI Trader - Step 2.mp4
11.9MB
8. Deep Reinforcement Learning for Stock Market trading/4. AI Trader - Step 3.mp4
15.84MB
8. Deep Reinforcement Learning for Stock Market trading/5. AI Trader - Step 4.mp4
15.92MB
8. Deep Reinforcement Learning for Stock Market trading/6. AI Trader - Step 5.mp4
33.2MB
8. Deep Reinforcement Learning for Stock Market trading/7. Dataset Loader function.mp4
38.89MB
8. Deep Reinforcement Learning for Stock Market trading/8. State creator function.mp4
32.32MB
8. Deep Reinforcement Learning for Stock Market trading/9. Loading the dataset.mp4
10.03MB
9. Data Validation with TensorFlow Data Validation (TFDV)/1. Project Setup.mp4
22.28MB
9. Data Validation with TensorFlow Data Validation (TFDV)/2. Loading the pollution dataset.mp4
24.84MB
9. Data Validation with TensorFlow Data Validation (TFDV)/3. Creating dataset Schema.mp4
24.09MB
9. Data Validation with TensorFlow Data Validation (TFDV)/4. Computing test set statistics.mp4
2.45MB
9. Data Validation with TensorFlow Data Validation (TFDV)/5. Anomaly detection with TensorFlow Data Validation.mp4
23.96MB
9. Data Validation with TensorFlow Data Validation (TFDV)/6. Preparing Schema for production.mp4
19.71MB
9. Data Validation with TensorFlow Data Validation (TFDV)/7. Saving the Schema.mp4
8.1MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统