46. Vector Databases Module Basics of Vector Space and High-Dimensional Data/1. Introduction to vector space.mp452.68MB
46. Vector Databases Module Basics of Vector Space and High-Dimensional Data/2. Distance metrics in vector space.mp463.98MB
46. Vector Databases Module Basics of Vector Space and High-Dimensional Data/3. Vector embeddings walkthrough.mp432.07MB
47. Vector Databases Module Introduction to The Pinecone Vector Database/1. Vector databases, comparison.mp475.96MB
47. Vector Databases Module Introduction to The Pinecone Vector Database/2. Pinecone registration, walkthrough and creating an Index.mp424.23MB
47. Vector Databases Module Introduction to The Pinecone Vector Database/3. Connecting to Pinecone using Python.mp414.18MB
47. Vector Databases Module Introduction to The Pinecone Vector Database/5. Creating and deleting a Pinecone index using Python.mp419.57MB
47. Vector Databases Module Introduction to The Pinecone Vector Database/6. Upserting data to a pinecone vector database.mp426.84MB
47. Vector Databases Module Introduction to The Pinecone Vector Database/7. Getting to know the fine web data set and loading it to Jupyter.mp422.04MB
47. Vector Databases Module Introduction to The Pinecone Vector Database/8. Upserting data from a text file and using an embedding algorithm.mp441.41MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/1. Introduction to semantic search.mp431.36MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/10. Data preprocessing and embedding for courses with section data.mp424.47MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/12. Upserting the new updated files to Pinecone.mp415.54MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/13. Similarity search and querying courses and sections data.mp445.16MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/15. Using the BERT embedding algorithm.mp443.87MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/16. Vector database for recommendation engines.mp445.05MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/17. Vector database for semantic image search.mp449.09MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/18. Vector database for biomedical research.mp433.6MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/2. Introduction to the case study – smart search for data science courses.mp448.2MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/3. Getting to know the data for the case study.mp432.2MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/4. Data loading and preprocessing.mp422.8MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/5. Pinecone Python APIs and connecting to the Pinecone server.mp427.1MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/6. Embedding Algorithms.mp435.73MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/7. Embedding the data and upserting the files to Pinecone.mp420.37MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/8. Similarity search and querying the data.mp433.29MB
48. Vector Databases Module Semantic Search with Pinecone and Custom (Case Study)/9. How to update and change your vector database.mp441.39MB
49. Speech Recognition Module Introduction/1. Welcome to the world of Speech Recognition.mp476.29MB