首页
磁力链接怎么用
한국어
English
日本語
简体中文
繁體中文
[FreeCourseSite.com] Udemy - Machine Learning using Python
文件类型
收录时间
最后活跃
资源热度
文件大小
文件数量
视频
2022-11-14 02:01
2025-1-4 04:50
127
7.06 GB
154
磁力链接
magnet:?xt=urn:btih:55995f6674d15a1613c0a25105fe8e1aa1989b04
迅雷链接
thunder://QUFtYWduZXQ6P3h0PXVybjpidGloOjU1OTk1ZjY2NzRkMTVhMTYxM2MwYTI1MTA1ZmU4ZTFhYTE5ODliMDRaWg==
二维码链接
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
相关链接
FreeCourseSite
com
Udemy
-
Machine
Learning
using
Python
文件列表
1. Setting up Python and Jupyter notebook/1. Installing Python and Anaconda.mp4
18.06MB
1. Setting up Python and Jupyter notebook/10. Working with Seaborn Library of Python.mp4
39.57MB
1. Setting up Python and Jupyter notebook/2. This is a Milestone!.mp4
20.66MB
1. Setting up Python and Jupyter notebook/3. Opening Jupyter Notebook.mp4
68.44MB
1. Setting up Python and Jupyter notebook/4. Introduction to Jupyter.mp4
44.06MB
1. Setting up Python and Jupyter notebook/5. Arithmetic operators in Python Python Basics.mp4
13.53MB
1. Setting up Python and Jupyter notebook/6. Strings in Python Python Basics.mp4
68.18MB
1. Setting up Python and Jupyter notebook/7. Lists, Tuples and Directories Python Basics.mp4
63.21MB
1. Setting up Python and Jupyter notebook/8. Working with Numpy Library of Python.mp4
46.45MB
1. Setting up Python and Jupyter notebook/9. Working with Pandas Library of Python.mp4
50.69MB
10. Comparing results from 3 models/1. Understanding the results of classification models.mp4
41.65MB
10. Comparing results from 3 models/2. Summary of the three models.mp4
22.23MB
11. Simple Decision Trees/1. Introduction to Decision trees.mp4
44.91MB
11. Simple Decision Trees/10. Creating Decision tree in Python.mp4
21.33MB
11. Simple Decision Trees/11. Evaluating model performance in Python.mp4
18.28MB
11. Simple Decision Trees/12. Plotting decision tree in Python.mp4
27.05MB
11. Simple Decision Trees/13. Pruning a tree.mp4
25.05MB
11. Simple Decision Trees/14. Pruning a tree in Python.mp4
25.06MB
11. Simple Decision Trees/2. Basics of Decision Trees.mp4
58.65MB
11. Simple Decision Trees/3. Understanding a Regression Tree.mp4
61.1MB
11. Simple Decision Trees/4. The stopping criteria for controlling tree growth.mp4
19.39MB
11. Simple Decision Trees/5. Importing the Data set into Python.mp4
15.86MB
11. Simple Decision Trees/6. Missing value treatment in Python.mp4
12.94MB
11. Simple Decision Trees/7. Dummy Variable Creation in Python.mp4
24.58MB
11. Simple Decision Trees/8. Dependent- Independent Data split in Python.mp4
16.87MB
11. Simple Decision Trees/9. Test-Train split in Python.mp4
25.63MB
12. Simple Classification Tree/1. Classification tree.mp4
40.23MB
12. Simple Classification Tree/2. The Data set for Classification problem.mp4
20.89MB
12. Simple Classification Tree/3. Classification tree in Python Preprocessing.mp4
53.82MB
12. Simple Classification Tree/4. Classification tree in Python Training.mp4
99.55MB
12. Simple Classification Tree/5. Advantages and Disadvantages of Decision Trees.mp4
10.05MB
13. Ensemble technique 1 - Bagging/1. Ensemble technique 1 - Bagging.mp4
39.32MB
13. Ensemble technique 1 - Bagging/2. Ensemble technique 1 - Bagging in Python.mp4
97.09MB
14. Ensemble technique 2 - Random Forests/1. Ensemble technique 2 - Random Forests.mp4
26.03MB
14. Ensemble technique 2 - Random Forests/2. Ensemble technique 2 - Random Forests in Python.mp4
54.86MB
14. Ensemble technique 2 - Random Forests/3. Using Grid Search in Python.mp4
91.74MB
15. Ensemble technique 3 - Boosting/1. Boosting.mp4
40.9MB
15. Ensemble technique 3 - Boosting/2. Ensemble technique 3a - Boosting in Python.mp4
39.86MB
15. Ensemble technique 3 - Boosting/3. Ensemble technique 3b - AdaBoost in Python.mp4
30.54MB
15. Ensemble technique 3 - Boosting/4. Ensemble technique 3c - XGBoost in Python.mp4
74.98MB
16. Support Vector Machines/1. Introduction to SVM's.mp4
21.64MB
16. Support Vector Machines/2. The Concept of a Hyperplane.mp4
40.55MB
16. Support Vector Machines/3. Maximum Margin Classifier.mp4
30.64MB
16. Support Vector Machines/4. Limitations of Maximum Margin Classifier.mp4
14.52MB
17. Support Vector classifiers/1. Support Vector classifiers.mp4
73.69MB
17. Support Vector classifiers/2. Limitations of Support Vector Classifiers.mp4
15.63MB
18. Support Vector Machines/1. Kernel Based Support Vector Machines.mp4
53.27MB
19. Creating Support Vector Machine Model in Python/1. Regression and Classification Models.mp4
4.69MB
19. Creating Support Vector Machine Model in Python/10. Radial Kernel with Hyperparameter Tuning.mp4
44.5MB
19. Creating Support Vector Machine Model in Python/2. Importing and preprocessing data in Python.mp4
26.45MB
19. Creating Support Vector Machine Model in Python/3. Standardizing the data.mp4
42.09MB
19. Creating Support Vector Machine Model in Python/4. SVM based Regression Model in Python.mp4
73.72MB
19. Creating Support Vector Machine Model in Python/5. Classification model - Preprocessing.mp4
53.92MB
19. Creating Support Vector Machine Model in Python/6. Classification model - Standardizing the data.mp4
10.61MB
19. Creating Support Vector Machine Model in Python/7. SVM Based classification model.mp4
72.9MB
19. Creating Support Vector Machine Model in Python/8. Hyper Parameter Tuning.mp4
67.53MB
19. Creating Support Vector Machine Model in Python/9. Polynomial Kernel with Hyperparameter Tuning.mp4
26.45MB
2. Basics of statistics/1. Types of Data.mp4
23.31MB
2. Basics of statistics/2. Types of Statistics.mp4
11.99MB
2. Basics of statistics/3. Describing data Graphically.mp4
76.04MB
2. Basics of statistics/4. Measures of Centers.mp4
43.32MB
2. Basics of statistics/5. Measures of Dispersion.mp4
26.31MB
20. Time Series Analysis and Forecasting/1. Introduction.mp4
18.68MB
20. Time Series Analysis and Forecasting/2. Time Series Forecasting - Use cases.mp4
31.35MB
20. Time Series Analysis and Forecasting/3. Forecasting model creation - Steps.mp4
12.13MB
20. Time Series Analysis and Forecasting/4. Forecasting model creation - Steps 1 (Goal).mp4
45.94MB
20. Time Series Analysis and Forecasting/5. Time Series - Basic Notations.mp4
78.9MB
21. Time Series - Preprocessing in Pyhton/1. Data Loading in Python.mp4
134.61MB
21. Time Series - Preprocessing in Pyhton/10. Exponential Smoothing.mp4
10.86MB
21. Time Series - Preprocessing in Pyhton/2. Time Series - Visualization Basics.mp4
80.35MB
21. Time Series - Preprocessing in Pyhton/3. Time Series - Visualization in Python.mp4
208.24MB
21. Time Series - Preprocessing in Pyhton/4. Time Series - Feature Engineering Basics.mp4
76.92MB
21. Time Series - Preprocessing in Pyhton/5. Time Series - Feature Engineering in Python.mp4
142.5MB
21. Time Series - Preprocessing in Pyhton/6. Time Series - Upsampling and Downsampling.mp4
23.34MB
21. Time Series - Preprocessing in Pyhton/7. Time Series - Upsampling and Downsampling in Python.mp4
124.28MB
21. Time Series - Preprocessing in Pyhton/8. Time Series - Power Transformation.mp4
18.7MB
21. Time Series - Preprocessing in Pyhton/9. Moving Average.mp4
50.04MB
22. Time Series - Important Concepts/1. White Noise.mp4
14.71MB
22. Time Series - Important Concepts/2. Random Walk.mp4
28.05MB
22. Time Series - Important Concepts/3. Decomposing Time Series in Python.mp4
78.61MB
22. Time Series - Important Concepts/4. Differencing.mp4
44.01MB
22. Time Series - Important Concepts/5. Differencing in Python.mp4
141.15MB
23. Time Series - Implementation in Python/1. Test Train Split in Python.mp4
77.12MB
23. Time Series - Implementation in Python/2. Naive (Persistence) model in Python.mp4
56.85MB
23. Time Series - Implementation in Python/3. Auto Regression Model - Basics.mp4
20.93MB
23. Time Series - Implementation in Python/4. Auto Regression Model creation in Python.mp4
67.57MB
23. Time Series - Implementation in Python/5. Auto Regression with Walk Forward validation in Python.mp4
61.79MB
23. Time Series - Implementation in Python/6. Moving Average model -Basics.mp4
31.74MB
23. Time Series - Implementation in Python/7. Moving Average model in Python.mp4
64.3MB
24. Time Series - ARIMA model/1. ACF and PACF.mp4
52.76MB
24. Time Series - ARIMA model/2. ARIMA model - Basics.mp4
26.47MB
24. Time Series - ARIMA model/3. ARIMA model in Python.mp4
84.87MB
24. Time Series - ARIMA model/4. ARIMA model with Walk Forward Validation in Python.mp4
36.14MB
25. Time Series - SARIMA model/1. SARIMA model.mp4
40.23MB
25. Time Series - SARIMA model/2. SARIMA model in Python.mp4
75.11MB
25. Time Series - SARIMA model/3. Stationary time Series.mp4
5.66MB
25. Time Series - SARIMA model/4. The final milestone!.mp4
11.85MB
3. Introduction to Machine Learning/1. Introduction to Machine Learning.mp4
113.34MB
3. Introduction to Machine Learning/2. Building a Machine Learning Model.mp4
40.97MB
4. Data Preprocessing/1. Gathering Business Knowledge.mp4
17.27MB
4. Data Preprocessing/10. Missing Value Imputation in Python.mp4
33.32MB
4. Data Preprocessing/11. Seasonality in Data.mp4
17.02MB
4. Data Preprocessing/12. Bi-variate analysis and Variable transformation.mp4
100.45MB
4. Data Preprocessing/13. Variable transformation and deletion in Python.mp4
67.33MB
4. Data Preprocessing/14. Non-usable variables.mp4
20.24MB
4. Data Preprocessing/15. Dummy variable creation Handling qualitative data.mp4
40.47MB
4. Data Preprocessing/16. Dummy variable creation in Python.mp4
40.8MB
4. Data Preprocessing/17. Correlation Analysis.mp4
74.68MB
4. Data Preprocessing/18. Correlation Analysis in Python.mp4
65.61MB
4. Data Preprocessing/2. Data Exploration.mp4
28.38MB
4. Data Preprocessing/3. The Dataset and the Data Dictionary.mp4
76.34MB
4. Data Preprocessing/4. Importing Data in Python.mp4
33.93MB
4. Data Preprocessing/5. Univariate analysis and EDD.mp4
29.25MB
4. Data Preprocessing/6. EDD in Python.mp4
78.5MB
4. Data Preprocessing/7. Outlier Treatment.mp4
26.61MB
4. Data Preprocessing/8. Outlier Treatment in Python.mp4
98.28MB
4. Data Preprocessing/9. Missing Value Imputation.mp4
24.46MB
5. Linear Regression/1. The Problem Statement.mp4
10.14MB
5. Linear Regression/10. Test-train split.mp4
41.83MB
5. Linear Regression/11. Bias Variance trade-off.mp4
25.1MB
5. Linear Regression/12. Test train split in Python.mp4
64.03MB
5. Linear Regression/13. Regression models other than OLS.mp4
16.53MB
5. Linear Regression/14. Subset selection techniques.mp4
79.05MB
5. Linear Regression/15. Shrinkage methods Ridge and Lasso.mp4
33.29MB
5. Linear Regression/16. Ridge regression and Lasso in Python.mp4
174.92MB
5. Linear Regression/17. Heteroscedasticity.mp4
14.49MB
5. Linear Regression/2. Basic Equations and Ordinary Least Squares (OLS) method.mp4
42.52MB
5. Linear Regression/3. Assessing accuracy of predicted coefficients.mp4
103.21MB
5. Linear Regression/4. Assessing Model Accuracy RSE and R squared.mp4
44.97MB
5. Linear Regression/5. Simple Linear Regression in Python.mp4
84.86MB
5. Linear Regression/6. Multiple Linear Regression.mp4
38.17MB
5. Linear Regression/7. The F - statistic.mp4
53.78MB
5. Linear Regression/8. Interpreting results of Categorical variables.mp4
21.42MB
5. Linear Regression/9. Multiple Linear Regression in Python.mp4
85.12MB
6. Introduction to the classification Models/1. Three classification models and Data set.mp4
52.25MB
6. Introduction to the classification Models/2. Importing the data into Python.mp4
6.88MB
6. Introduction to the classification Models/3. The problem statements.mp4
17.05MB
6. Introduction to the classification Models/4. Why can't we use Linear Regression.mp4
16.91MB
7. Logistic Regression/1. Logistic Regression.mp4
32.91MB
7. Logistic Regression/2. Training a Simple Logistic Model in Python.mp4
69.52MB
7. Logistic Regression/3. Result of Simple Logistic Regression.mp4
26.9MB
7. Logistic Regression/4. Logistic with multiple predictors.mp4
8.51MB
7. Logistic Regression/5. Training multiple predictor Logistic model in Python.mp4
34.25MB
7. Logistic Regression/6. Confusion Matrix.mp4
21.1MB
7. Logistic Regression/7. Creating Confusion Matrix in Python.mp4
60.79MB
7. Logistic Regression/8. Evaluating performance of model.mp4
35.17MB
7. Logistic Regression/9. Evaluating model performance in Python.mp4
13.39MB
8. Linear Discriminant Analysis (LDA)/1. Linear Discriminant Analysis.mp4
40.92MB
8. Linear Discriminant Analysis (LDA)/2. LDA in Python.mp4
17.65MB
9. K Nearest neighbors classifier/1. Test-Train Split.mp4
39.26MB
9. K Nearest neighbors classifier/2. Test-Train Split in Python.mp4
59MB
9. K Nearest neighbors classifier/3. K-Nearest Neighbors classifier.mp4
75.36MB
9. K Nearest neighbors classifier/4. K-Nearest Neighbors in Python Part 1.mp4
46.15MB
9. K Nearest neighbors classifier/5. K-Nearest Neighbors in Python Part 2.mp4
53.16MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!
违规内容投诉邮箱:
[email protected]
概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统