首页 磁力链接怎么用

[FreeCourseSite.com] Udemy - The Data Science Course Complete Data Science Bootcamp

文件类型 收录时间 最后活跃 资源热度 文件大小 文件数量
视频 2024-1-3 08:11 2024-12-23 07:07 108 9.08 GB 408
二维码链接
[FreeCourseSite.com] Udemy - The Data Science Course Complete Data Science Bootcamp的二维码
种子下载(838888不存储任何种子文件)
种子下载线路1(迅雷)--推荐
种子下载线路2(比特彗星)
种子下载线路3(torcache)
3条线路均为国内外知名下载网站种子链接,内容跟本站无关!
文件列表
  1. 01 - Part 1 Introduction/001 A Practical Example What You Will Learn in This Course.mp443.94MB
  2. 01 - Part 1 Introduction/002 What Does the Course Cover.mp451.36MB
  3. 02 - The Field of Data Science - The Various Data Science Disciplines/001 Data Science and Business Buzzwords Why are there so Many.mp457.35MB
  4. 02 - The Field of Data Science - The Various Data Science Disciplines/002 What is the difference between Analysis and Analytics.mp411.16MB
  5. 02 - The Field of Data Science - The Various Data Science Disciplines/003 Business Analytics, Data Analytics, and Data Science An Introduction.mp452.62MB
  6. 02 - The Field of Data Science - The Various Data Science Disciplines/004 Continuing with BI, ML, and AI.mp436.95MB
  7. 02 - The Field of Data Science - The Various Data Science Disciplines/005 A Breakdown of our Data Science Infographic.mp445.3MB
  8. 04 - The Field of Data Science - The Benefits of Each Discipline/001 The Reason Behind These Disciplines.mp446.7MB
  9. 05 - The Field of Data Science - Popular Data Science Techniques/001 Techniques for Working with Traditional Data.mp4107.39MB
  10. 05 - The Field of Data Science - Popular Data Science Techniques/002 Real Life Examples of Traditional Data.mp418.37MB
  11. 05 - The Field of Data Science - Popular Data Science Techniques/003 Techniques for Working with Big Data.mp462.11MB
  12. 05 - The Field of Data Science - Popular Data Science Techniques/004 Real Life Examples of Big Data.mp413.07MB
  13. 05 - The Field of Data Science - Popular Data Science Techniques/005 Business Intelligence (BI) Techniques.mp452.88MB
  14. 05 - The Field of Data Science - Popular Data Science Techniques/006 Real Life Examples of Business Intelligence (BI).mp424.68MB
  15. 05 - The Field of Data Science - Popular Data Science Techniques/007 Techniques for Working with Traditional Methods.mp476.1MB
  16. 05 - The Field of Data Science - Popular Data Science Techniques/008 Real Life Examples of Traditional Methods.mp427.41MB
  17. 05 - The Field of Data Science - Popular Data Science Techniques/009 Machine Learning (ML) Techniques.mp449.41MB
  18. 05 - The Field of Data Science - Popular Data Science Techniques/010 Types of Machine Learning.mp480.57MB
  19. 05 - The Field of Data Science - Popular Data Science Techniques/011 Real Life Examples of Machine Learning (ML).mp427.7MB
  20. 07 - The Field of Data Science - Careers in Data Science/001 Finding the Job - What to Expect and What to Look for.mp413.81MB
  21. 08 - The Field of Data Science - Debunking Common Misconceptions/001 Debunking Common Misconceptions.mp458.81MB
  22. 09 - Part 2 Probability/001 The Basic Probability Formula.mp429.39MB
  23. 09 - Part 2 Probability/002 Computing Expected Values.mp445.67MB
  24. 09 - Part 2 Probability/003 Frequency.mp437.36MB
  25. 09 - Part 2 Probability/004 Events and Their Complements.mp425.83MB
  26. 10 - Probability - Combinatorics/001 Fundamentals of Combinatorics.mp45.95MB
  27. 10 - Probability - Combinatorics/002 Permutations and How to Use Them.mp417.52MB
  28. 10 - Probability - Combinatorics/003 Simple Operations with Factorials.mp416.68MB
  29. 10 - Probability - Combinatorics/004 Solving Variations with Repetition.mp413.95MB
  30. 10 - Probability - Combinatorics/005 Solving Variations without Repetition.mp418.25MB
  31. 10 - Probability - Combinatorics/006 Solving Combinations.mp423.67MB
  32. 10 - Probability - Combinatorics/007 Symmetry of Combinations.mp413.75MB
  33. 10 - Probability - Combinatorics/008 Solving Combinations with Separate Sample Spaces.mp410.65MB
  34. 10 - Probability - Combinatorics/009 Combinatorics in Real-Life The Lottery.mp416.39MB
  35. 10 - Probability - Combinatorics/010 A Recap of Combinatorics.mp415.02MB
  36. 10 - Probability - Combinatorics/011 A Practical Example of Combinatorics.mp442.8MB
  37. 11 - Probability - Bayesian Inference/001 Sets and Events.mp417.65MB
  38. 11 - Probability - Bayesian Inference/002 Ways Sets Can Interact.mp419.3MB
  39. 11 - Probability - Bayesian Inference/003 Intersection of Sets.mp411.01MB
  40. 11 - Probability - Bayesian Inference/004 Union of Sets.mp424.2MB
  41. 11 - Probability - Bayesian Inference/005 Mutually Exclusive Sets.mp410.59MB
  42. 11 - Probability - Bayesian Inference/006 Dependence and Independence of Sets.mp414.92MB
  43. 11 - Probability - Bayesian Inference/007 The Conditional Probability Formula.mp416.59MB
  44. 11 - Probability - Bayesian Inference/008 The Law of Total Probability.mp411.59MB
  45. 11 - Probability - Bayesian Inference/009 The Additive Rule.mp411.11MB
  46. 11 - Probability - Bayesian Inference/010 The Multiplication Law.mp420.19MB
  47. 11 - Probability - Bayesian Inference/011 Bayes' Law.mp421.34MB
  48. 11 - Probability - Bayesian Inference/012 A Practical Example of Bayesian Inference.mp4139.14MB
  49. 12 - Probability - Distributions/001 Fundamentals of Probability Distributions.mp419.43MB
  50. 12 - Probability - Distributions/002 Types of Probability Distributions.mp435.58MB
  51. 12 - Probability - Distributions/003 Characteristics of Discrete Distributions.mp49.42MB
  52. 12 - Probability - Distributions/004 Discrete Distributions The Uniform Distribution.mp410.31MB
  53. 12 - Probability - Distributions/005 Discrete Distributions The Bernoulli Distribution.mp415.12MB
  54. 12 - Probability - Distributions/006 Discrete Distributions The Binomial Distribution.mp430.61MB
  55. 12 - Probability - Distributions/007 Discrete Distributions The Poisson Distribution.mp423.93MB
  56. 12 - Probability - Distributions/008 Characteristics of Continuous Distributions.mp436.13MB
  57. 12 - Probability - Distributions/009 Continuous Distributions The Normal Distribution.mp420.01MB
  58. 12 - Probability - Distributions/010 Continuous Distributions The Standard Normal Distribution.mp438.36MB
  59. 12 - Probability - Distributions/011 Continuous Distributions The Students' T Distribution.mp49.24MB
  60. 12 - Probability - Distributions/012 Continuous Distributions The Chi-Squared Distribution.mp420.97MB
  61. 12 - Probability - Distributions/013 Continuous Distributions The Exponential Distribution.mp416MB
  62. 12 - Probability - Distributions/014 Continuous Distributions The Logistic Distribution.mp416.17MB
  63. 12 - Probability - Distributions/015 A Practical Example of Probability Distributions.mp4138.12MB
  64. 13 - Probability - Probability in Other Fields/001 Probability in Finance.mp440.34MB
  65. 13 - Probability - Probability in Other Fields/002 Probability in Statistics.mp431.6MB
  66. 13 - Probability - Probability in Other Fields/003 Probability in Data Science.mp456.89MB
  67. 14 - Part 3 Statistics/001 Population and Sample.mp435.1MB
  68. 15 - Statistics - Descriptive Statistics/001 Types of Data.mp443.17MB
  69. 15 - Statistics - Descriptive Statistics/002 Levels of Measurement.mp432.18MB
  70. 15 - Statistics - Descriptive Statistics/003 Categorical Variables - Visualization Techniques.mp436.64MB
  71. 15 - Statistics - Descriptive Statistics/005 Numerical Variables - Frequency Distribution Table.mp417.69MB
  72. 15 - Statistics - Descriptive Statistics/007 The Histogram.mp49.57MB
  73. 15 - Statistics - Descriptive Statistics/009 Cross Tables and Scatter Plots.mp419.71MB
  74. 15 - Statistics - Descriptive Statistics/011 Mean, median and mode.mp424.49MB
  75. 15 - Statistics - Descriptive Statistics/013 Skewness.mp413.31MB
  76. 15 - Statistics - Descriptive Statistics/015 Variance.mp423.54MB
  77. 15 - Statistics - Descriptive Statistics/017 Standard Deviation and Coefficient of Variation.mp420.14MB
  78. 15 - Statistics - Descriptive Statistics/019 Covariance.mp418.38MB
  79. 15 - Statistics - Descriptive Statistics/021 Correlation Coefficient.mp419.34MB
  80. 16 - Statistics - Practical Example Descriptive Statistics/001 Practical Example Descriptive Statistics.mp4150.18MB
  81. 17 - Statistics - Inferential Statistics Fundamentals/001 Introduction.mp43.06MB
  82. 17 - Statistics - Inferential Statistics Fundamentals/002 What is a Distribution.mp417.2MB
  83. 17 - Statistics - Inferential Statistics Fundamentals/003 The Normal Distribution.mp427.49MB
  84. 17 - Statistics - Inferential Statistics Fundamentals/004 The Standard Normal Distribution.mp48.61MB
  85. 17 - Statistics - Inferential Statistics Fundamentals/006 Central Limit Theorem.mp423.22MB
  86. 17 - Statistics - Inferential Statistics Fundamentals/007 Standard error.mp413.52MB
  87. 17 - Statistics - Inferential Statistics Fundamentals/008 Estimators and Estimates.mp427.7MB
  88. 18 - Statistics - Inferential Statistics Confidence Intervals/001 What are Confidence Intervals.mp428.62MB
  89. 18 - Statistics - Inferential Statistics Confidence Intervals/002 Confidence Intervals; Population Variance Known; Z-score.mp452.16MB
  90. 18 - Statistics - Inferential Statistics Confidence Intervals/004 Confidence Interval Clarifications.mp418.94MB
  91. 18 - Statistics - Inferential Statistics Confidence Intervals/005 Student's T Distribution.mp413.68MB
  92. 18 - Statistics - Inferential Statistics Confidence Intervals/006 Confidence Intervals; Population Variance Unknown; T-score.mp413.69MB
  93. 18 - Statistics - Inferential Statistics Confidence Intervals/008 Margin of Error.mp423.1MB
  94. 18 - Statistics - Inferential Statistics Confidence Intervals/009 Confidence intervals. Two means. Dependent samples.mp444.97MB
  95. 18 - Statistics - Inferential Statistics Confidence Intervals/011 Confidence intervals. Two means. Independent Samples (Part 1).mp411.99MB
  96. 18 - Statistics - Inferential Statistics Confidence Intervals/013 Confidence intervals. Two means. Independent Samples (Part 2).mp414.62MB
  97. 18 - Statistics - Inferential Statistics Confidence Intervals/015 Confidence intervals. Two means. Independent Samples (Part 3).mp46.89MB
  98. 19 - Statistics - Practical Example Inferential Statistics/001 Practical Example Inferential Statistics.mp468.98MB
  99. 20 - Statistics - Hypothesis Testing/001 Null vs Alternative Hypothesis.mp483.58MB
  100. 20 - Statistics - Hypothesis Testing/003 Rejection Region and Significance Level.mp438.69MB
  101. 20 - Statistics - Hypothesis Testing/004 Type I Error and Type II Error.mp418.61MB
  102. 20 - Statistics - Hypothesis Testing/005 Test for the Mean. Population Variance Known.mp436.95MB
  103. 20 - Statistics - Hypothesis Testing/007 p-value.mp433.78MB
  104. 20 - Statistics - Hypothesis Testing/008 Test for the Mean. Population Variance Unknown.mp419.71MB
  105. 20 - Statistics - Hypothesis Testing/010 Test for the Mean. Dependent Samples.mp432.79MB
  106. 20 - Statistics - Hypothesis Testing/012 Test for the mean. Independent Samples (Part 1).mp415.41MB
  107. 20 - Statistics - Hypothesis Testing/014 Test for the mean. Independent Samples (Part 2).mp424.45MB
  108. 21 - Statistics - Practical Example Hypothesis Testing/001 Practical Example Hypothesis Testing.mp445.82MB
  109. 22 - Part 4 Introduction to Python/001 Introduction to Programming.mp414.76MB
  110. 22 - Part 4 Introduction to Python/002 Why Python.mp412.04MB
  111. 22 - Part 4 Introduction to Python/003 Why Jupyter.mp48.13MB
  112. 22 - Part 4 Introduction to Python/004 Installing Python and Jupyter.mp432.82MB
  113. 22 - Part 4 Introduction to Python/005 Understanding Jupyter's Interface - the Notebook Dashboard.mp46.07MB
  114. 22 - Part 4 Introduction to Python/006 Prerequisites for Coding in the Jupyter Notebooks.mp418.96MB
  115. 23 - Python - Variables and Data Types/001 Variables.mp48.95MB
  116. 23 - Python - Variables and Data Types/002 Numbers and Boolean Values in Python.mp413.7MB
  117. 23 - Python - Variables and Data Types/003 Python Strings.mp415.67MB
  118. 24 - Python - Basic Python Syntax/001 Using Arithmetic Operators in Python.mp48.63MB
  119. 24 - Python - Basic Python Syntax/002 The Double Equality Sign.mp42.72MB
  120. 24 - Python - Basic Python Syntax/003 How to Reassign Values.mp41.86MB
  121. 24 - Python - Basic Python Syntax/004 Add Comments.mp42.41MB
  122. 24 - Python - Basic Python Syntax/005 Understanding Line Continuation.mp41.2MB
  123. 24 - Python - Basic Python Syntax/006 Indexing Elements.mp42.36MB
  124. 24 - Python - Basic Python Syntax/007 Structuring with Indentation.mp42.79MB
  125. 25 - Python - Other Python Operators/001 Comparison Operators.mp44.82MB
  126. 25 - Python - Other Python Operators/002 Logical and Identity Operators.mp419MB
  127. 26 - Python - Conditional Statements/001 The IF Statement.mp46.07MB
  128. 26 - Python - Conditional Statements/002 The ELSE Statement.mp46.04MB
  129. 26 - Python - Conditional Statements/003 The ELIF Statement.mp414.23MB
  130. 26 - Python - Conditional Statements/004 A Note on Boolean Values.mp44.24MB
  131. 27 - Python - Python Functions/001 Defining a Function in Python.mp43.23MB
  132. 27 - Python - Python Functions/002 How to Create a Function with a Parameter.mp48.33MB
  133. 27 - Python - Python Functions/003 Defining a Function in Python - Part II.mp46.45MB
  134. 27 - Python - Python Functions/004 How to Use a Function within a Function.mp43.23MB
  135. 27 - Python - Python Functions/005 Conditional Statements and Functions.mp45.98MB
  136. 27 - Python - Python Functions/006 Functions Containing a Few Arguments.mp42.83MB
  137. 27 - Python - Python Functions/007 Built-in Functions in Python.mp410.19MB
  138. 28 - Python - Sequences/001 Lists.mp423.03MB
  139. 28 - Python - Sequences/002 Using Methods.mp430.37MB
  140. 28 - Python - Sequences/003 List Slicing.mp419.18MB
  141. 28 - Python - Sequences/004 Tuples.mp418.19MB
  142. 28 - Python - Sequences/005 Dictionaries.mp432.44MB
  143. 29 - Python - Iterations/001 For Loops.mp423.6MB
  144. 29 - Python - Iterations/002 While Loops and Incrementing.mp420.18MB
  145. 29 - Python - Iterations/003 Lists with the range() Function.mp411.94MB
  146. 29 - Python - Iterations/004 Conditional Statements and Loops.mp421.94MB
  147. 29 - Python - Iterations/005 Conditional Statements, Functions, and Loops.mp44.27MB
  148. 29 - Python - Iterations/006 How to Iterate over Dictionaries.mp416.44MB
  149. 30 - Python - Advanced Python Tools/001 Object Oriented Programming.mp48.65MB
  150. 30 - Python - Advanced Python Tools/002 Modules and Packages.mp42.08MB
  151. 30 - Python - Advanced Python Tools/003 What is the Standard Library.mp45.05MB
  152. 30 - Python - Advanced Python Tools/004 Importing Modules in Python.mp48.55MB
  153. 31 - Part 5 Advanced Statistical Methods in Python/001 Introduction to Regression Analysis.mp43.59MB
  154. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/001 The Linear Regression Model.mp413.48MB
  155. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/002 Correlation vs Regression.mp43.84MB
  156. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/004 Python Packages Installation.mp423.67MB
  157. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/005 First Regression in Python.mp429.62MB
  158. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/007 Using Seaborn for Graphs.mp47.37MB
  159. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/008 How to Interpret the Regression Table.mp428.73MB
  160. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/009 Decomposition of Variability.mp48.79MB
  161. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/010 What is the OLS.mp422.48MB
  162. 32 - Advanced Statistical Methods - Linear Regression with StatsModels/011 R-Squared.mp411.2MB
  163. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/001 Multiple Linear Regression.mp45.68MB
  164. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/002 Adjusted R-Squared.mp434.19MB
  165. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/004 Test for Significance of the Model (F-Test).mp47.17MB
  166. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/005 OLS Assumptions.mp45.26MB
  167. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/006 A1 Linearity.mp43.57MB
  168. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/007 A2 No Endogeneity.mp49.24MB
  169. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/008 A3 Normality and Homoscedasticity.mp427.38MB
  170. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/009 A4 No Autocorrelation.mp47.89MB
  171. 33 - Advanced Statistical Methods - Multiple Linear Regression with StatsModels/010 A5 No Multicollinearity.mp47.6MB
  172. 34 - Advanced Statistical Methods - Linear Regression with sklearn/002 How are we Going to Approach this Section.mp45.29MB
  173. 34 - Advanced Statistical Methods - Linear Regression with sklearn/003 Simple Linear Regression with sklearn.mp431.62MB
  174. 34 - Advanced Statistical Methods - Linear Regression with sklearn/004 Simple Linear Regression with sklearn - A StatsModels-like Summary Table.mp428.89MB
  175. 34 - Advanced Statistical Methods - Linear Regression with sklearn/007 Multiple Linear Regression with sklearn.mp411.01MB
  176. 34 - Advanced Statistical Methods - Linear Regression with sklearn/008 Calculating the Adjusted R-Squared in sklearn.mp421.75MB
  177. 34 - Advanced Statistical Methods - Linear Regression with sklearn/010 Feature Selection (F-regression).mp420.47MB
  178. 34 - Advanced Statistical Methods - Linear Regression with sklearn/012 Creating a Summary Table with P-values.mp46.45MB
  179. 34 - Advanced Statistical Methods - Linear Regression with sklearn/014 Feature Scaling (Standardization).mp420.36MB
  180. 34 - Advanced Statistical Methods - Linear Regression with sklearn/015 Feature Selection through Standardization of Weights.mp424.46MB
  181. 34 - Advanced Statistical Methods - Linear Regression with sklearn/016 Predicting with the Standardized Coefficients.mp420.42MB
  182. 34 - Advanced Statistical Methods - Linear Regression with sklearn/018 Underfitting and Overfitting.mp45.83MB
  183. 34 - Advanced Statistical Methods - Linear Regression with sklearn/019 Train - Test Split Explained.mp435.57MB
  184. 35 - Advanced Statistical Methods - Practical Example Linear Regression/001 Practical Example Linear Regression (Part 1).mp484.69MB
  185. 35 - Advanced Statistical Methods - Practical Example Linear Regression/002 Practical Example Linear Regression (Part 2).mp431.88MB
  186. 35 - Advanced Statistical Methods - Practical Example Linear Regression/004 Practical Example Linear Regression (Part 3).mp416.65MB
  187. 35 - Advanced Statistical Methods - Practical Example Linear Regression/006 Practical Example Linear Regression (Part 4).mp439.4MB
  188. 35 - Advanced Statistical Methods - Practical Example Linear Regression/008 Practical Example Linear Regression (Part 5).mp450.4MB
  189. 36 - Advanced Statistical Methods - Logistic Regression/001 Introduction to Logistic Regression.mp45.87MB
  190. 36 - Advanced Statistical Methods - Logistic Regression/002 A Simple Example in Python.mp421.89MB
  191. 36 - Advanced Statistical Methods - Logistic Regression/003 Logistic vs Logit Function.mp423.76MB
  192. 36 - Advanced Statistical Methods - Logistic Regression/004 Building a Logistic Regression.mp48.59MB
  193. 36 - Advanced Statistical Methods - Logistic Regression/006 An Invaluable Coding Tip.mp418.76MB
  194. 36 - Advanced Statistical Methods - Logistic Regression/007 Understanding Logistic Regression Tables.mp414.58MB
  195. 36 - Advanced Statistical Methods - Logistic Regression/009 What do the Odds Actually Mean.mp411.39MB
  196. 36 - Advanced Statistical Methods - Logistic Regression/010 Binary Predictors in a Logistic Regression.mp424.83MB
  197. 36 - Advanced Statistical Methods - Logistic Regression/012 Calculating the Accuracy of the Model.mp420.27MB
  198. 36 - Advanced Statistical Methods - Logistic Regression/014 Underfitting and Overfitting.mp47.49MB
  199. 36 - Advanced Statistical Methods - Logistic Regression/015 Testing the Model.mp421.59MB
  200. 37 - Advanced Statistical Methods - Cluster Analysis/001 Introduction to Cluster Analysis.mp414.46MB
  201. 37 - Advanced Statistical Methods - Cluster Analysis/002 Some Examples of Clusters.mp435.87MB
  202. 37 - Advanced Statistical Methods - Cluster Analysis/003 Difference between Classification and Clustering.mp49.67MB
  203. 37 - Advanced Statistical Methods - Cluster Analysis/004 Math Prerequisites.mp45.27MB
  204. 38 - Advanced Statistical Methods - K-Means Clustering/001 K-Means Clustering.mp410.82MB
  205. 38 - Advanced Statistical Methods - K-Means Clustering/002 A Simple Example of Clustering.mp434.21MB
  206. 38 - Advanced Statistical Methods - K-Means Clustering/004 Clustering Categorical Data.mp410.35MB
  207. 38 - Advanced Statistical Methods - K-Means Clustering/006 How to Choose the Number of Clusters.mp426.87MB
  208. 38 - Advanced Statistical Methods - K-Means Clustering/008 Pros and Cons of K-Means Clustering.mp411.12MB
  209. 38 - Advanced Statistical Methods - K-Means Clustering/009 To Standardize or not to Standardize.mp410.92MB
  210. 38 - Advanced Statistical Methods - K-Means Clustering/010 Relationship between Clustering and Regression.mp43.51MB
  211. 38 - Advanced Statistical Methods - K-Means Clustering/011 Market Segmentation with Cluster Analysis (Part 1).mp428.09MB
  212. 38 - Advanced Statistical Methods - K-Means Clustering/012 Market Segmentation with Cluster Analysis (Part 2).mp434.09MB
  213. 38 - Advanced Statistical Methods - K-Means Clustering/013 How is Clustering Useful.mp437.48MB
  214. 39 - Advanced Statistical Methods - Other Types of Clustering/001 Types of Clustering.mp49.01MB
  215. 39 - Advanced Statistical Methods - Other Types of Clustering/002 Dendrogram.mp418.3MB
  216. 39 - Advanced Statistical Methods - Other Types of Clustering/003 Heatmaps.mp425.71MB
  217. 40 - Part 6 Mathematics/001 What is a Matrix.mp411.94MB
  218. 40 - Part 6 Mathematics/002 Scalars and Vectors.mp48.53MB
  219. 40 - Part 6 Mathematics/003 Linear Algebra and Geometry.mp413.73MB
  220. 40 - Part 6 Mathematics/004 Arrays in Python - A Convenient Way To Represent Matrices.mp418.98MB
  221. 40 - Part 6 Mathematics/005 What is a Tensor.mp415.53MB
  222. 40 - Part 6 Mathematics/006 Addition and Subtraction of Matrices.mp422.1MB
  223. 40 - Part 6 Mathematics/007 Errors when Adding Matrices.mp45.78MB
  224. 40 - Part 6 Mathematics/008 Transpose of a Matrix.mp420.49MB
  225. 40 - Part 6 Mathematics/009 Dot Product.mp412.84MB
  226. 40 - Part 6 Mathematics/010 Dot Product of Matrices.mp434.32MB
  227. 40 - Part 6 Mathematics/011 Why is Linear Algebra Useful.mp488.42MB
  228. 41 - Part 7 Deep Learning/001 What to Expect from this Part.mp411.73MB
  229. 42 - Deep Learning - Introduction to Neural Networks/001 Introduction to Neural Networks.mp410.49MB
  230. 42 - Deep Learning - Introduction to Neural Networks/002 Training the Model.mp47.71MB
  231. 42 - Deep Learning - Introduction to Neural Networks/003 Types of Machine Learning.mp413.05MB
  232. 42 - Deep Learning - Introduction to Neural Networks/004 The Linear Model (Linear Algebraic Version).mp47.98MB
  233. 42 - Deep Learning - Introduction to Neural Networks/005 The Linear Model with Multiple Inputs.mp47.91MB
  234. 42 - Deep Learning - Introduction to Neural Networks/006 The Linear model with Multiple Inputs and Multiple Outputs.mp416.66MB
  235. 42 - Deep Learning - Introduction to Neural Networks/007 Graphical Representation of Simple Neural Networks.mp47.78MB
  236. 42 - Deep Learning - Introduction to Neural Networks/008 What is the Objective Function.mp46.18MB
  237. 42 - Deep Learning - Introduction to Neural Networks/009 Common Objective Functions L2-norm Loss.mp45.47MB
  238. 42 - Deep Learning - Introduction to Neural Networks/010 Common Objective Functions Cross-Entropy Loss.mp49.84MB
  239. 42 - Deep Learning - Introduction to Neural Networks/011 Optimization Algorithm 1-Parameter Gradient Descent.mp423.59MB
  240. 42 - Deep Learning - Introduction to Neural Networks/012 Optimization Algorithm n-Parameter Gradient Descent.mp416.83MB
  241. 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/001 Basic NN Example (Part 1).mp49.34MB
  242. 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/002 Basic NN Example (Part 2).mp415.23MB
  243. 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/003 Basic NN Example (Part 3).mp415.65MB
  244. 43 - Deep Learning - How to Build a Neural Network from Scratch with NumPy/004 Basic NN Example (Part 4).mp439.99MB
  245. 44 - Deep Learning - TensorFlow 2.0 Introduction/001 How to Install TensorFlow 2.0.mp427.32MB
  246. 44 - Deep Learning - TensorFlow 2.0 Introduction/002 TensorFlow Outline and Comparison with Other Libraries.mp415.28MB
  247. 44 - Deep Learning - TensorFlow 2.0 Introduction/003 TensorFlow 1 vs TensorFlow 2.mp415.32MB
  248. 44 - Deep Learning - TensorFlow 2.0 Introduction/004 A Note on TensorFlow 2 Syntax.mp44.63MB
  249. 44 - Deep Learning - TensorFlow 2.0 Introduction/005 Types of File Formats Supporting TensorFlow.mp48.86MB
  250. 44 - Deep Learning - TensorFlow 2.0 Introduction/006 Outlining the Model with TensorFlow 2.mp426.94MB
  251. 44 - Deep Learning - TensorFlow 2.0 Introduction/007 Interpreting the Result and Extracting the Weights and Bias.mp425.96MB
  252. 44 - Deep Learning - TensorFlow 2.0 Introduction/008 Customizing a TensorFlow 2 Model.mp416.71MB
  253. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/001 What is a Layer.mp45.17MB
  254. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/002 What is a Deep Net.mp49.12MB
  255. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/003 Digging into a Deep Net.mp423.7MB
  256. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/004 Non-Linearities and their Purpose.mp422.57MB
  257. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/005 Activation Functions.mp48.85MB
  258. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/006 Activation Functions Softmax Activation.mp48.74MB
  259. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/007 Backpropagation.mp420.35MB
  260. 45 - Deep Learning - Digging Deeper into NNs Introducing Deep Neural Networks/008 Backpropagation Picture.mp48.06MB
  261. 46 - Deep Learning - Overfitting/001 What is Overfitting.mp410.81MB
  262. 46 - Deep Learning - Overfitting/002 Underfitting and Overfitting for Classification.mp414MB
  263. 46 - Deep Learning - Overfitting/003 What is Validation.mp48.38MB
  264. 46 - Deep Learning - Overfitting/004 Training, Validation, and Test Datasets.mp49.4MB
  265. 46 - Deep Learning - Overfitting/005 N-Fold Cross Validation.mp46.24MB
  266. 46 - Deep Learning - Overfitting/006 Early Stopping or When to Stop Training.mp410.29MB
  267. 47 - Deep Learning - Initialization/001 What is Initialization.mp412.85MB
  268. 47 - Deep Learning - Initialization/002 Types of Simple Initializations.mp45.73MB
  269. 47 - Deep Learning - Initialization/003 State-of-the-Art Method - (Xavier) Glorot Initialization.mp45.46MB
  270. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/001 Stochastic Gradient Descent.mp49.67MB
  271. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/002 Problems with Gradient Descent.mp43.65MB
  272. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/003 Momentum.mp45.18MB
  273. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/005 Learning Rate Schedules Visualized.mp48MB
  274. 48 - Deep Learning - Digging into Gradient Descent and Learning Rate Schedules/007 Adam (Adaptive Moment Estimation).mp47.14MB
  275. 49 - Deep Learning - Preprocessing/001 Preprocessing Introduction.mp49.23MB
  276. 49 - Deep Learning - Preprocessing/002 Types of Basic Preprocessing.mp43.24MB
  277. 49 - Deep Learning - Preprocessing/003 Standardization.mp412.07MB
  278. 49 - Deep Learning - Preprocessing/004 Preprocessing Categorical Data.mp45.44MB
  279. 49 - Deep Learning - Preprocessing/005 Binary and One-Hot Encoding.mp423.94MB
  280. 50 - Deep Learning - Classifying on the MNIST Dataset/001 MNIST The Dataset.mp44.53MB
  281. 50 - Deep Learning - Classifying on the MNIST Dataset/002 MNIST How to Tackle the MNIST.mp47.95MB
  282. 50 - Deep Learning - Classifying on the MNIST Dataset/003 MNIST Importing the Relevant Packages and Loading the Data.mp412.24MB
  283. 50 - Deep Learning - Classifying on the MNIST Dataset/004 MNIST Preprocess the Data - Create a Validation Set and Scale It.mp422.9MB
  284. 50 - Deep Learning - Classifying on the MNIST Dataset/006 MNIST Preprocess the Data - Shuffle and Batch.mp432.69MB
  285. 50 - Deep Learning - Classifying on the MNIST Dataset/008 MNIST Outline the Model.mp422.08MB
  286. 50 - Deep Learning - Classifying on the MNIST Dataset/009 MNIST Select the Loss and the Optimizer.mp410.63MB
  287. 50 - Deep Learning - Classifying on the MNIST Dataset/010 MNIST Learning.mp430.99MB
  288. 50 - Deep Learning - Classifying on the MNIST Dataset/012 MNIST Testing the Model.mp422.61MB
  289. 51 - Deep Learning - Business Case Example/001 Business Case Exploring the Dataset and Identifying Predictors.mp451.28MB
  290. 51 - Deep Learning - Business Case Example/002 Business Case Outlining the Solution.mp43.05MB
  291. 51 - Deep Learning - Business Case Example/003 Business Case Balancing the Dataset.mp427.31MB
  292. 51 - Deep Learning - Business Case Example/004 Business Case Preprocessing the Data.mp473.86MB
  293. 51 - Deep Learning - Business Case Example/006 Business Case Load the Preprocessed Data.mp413.83MB
  294. 51 - Deep Learning - Business Case Example/008 Business Case Learning and Interpreting the Result.mp427.77MB
  295. 51 - Deep Learning - Business Case Example/009 Business Case Setting an Early Stopping Mechanism.mp443.75MB
  296. 51 - Deep Learning - Business Case Example/011 Business Case Testing the Model.mp48.18MB
  297. 52 - Deep Learning - Conclusion/001 Summary on What You've Learned.mp49.86MB
  298. 52 - Deep Learning - Conclusion/002 What's Further out there in terms of Machine Learning.mp44.79MB
  299. 52 - Deep Learning - Conclusion/004 An overview of CNNs.mp413.38MB
  300. 52 - Deep Learning - Conclusion/005 An Overview of RNNs.mp46.97MB
  301. 52 - Deep Learning - Conclusion/006 An Overview of non-NN Approaches.mp416.08MB
  302. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/002 How to Install TensorFlow 1.mp45MB
  303. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/004 TensorFlow Intro.mp416.88MB
  304. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/005 Actual Introduction to TensorFlow.mp49.15MB
  305. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/006 Types of File Formats, supporting Tensors.mp48.89MB
  306. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/007 Basic NN Example with TF Inputs, Outputs, Targets, Weights, Biases.mp417.7MB
  307. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/008 Basic NN Example with TF Loss Function and Gradient Descent.mp415.7MB
  308. 53 - Appendix Deep Learning - TensorFlow 1 Introduction/009 Basic NN Example with TF Model Output.mp419.14MB
  309. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/001 MNIST What is the MNIST Dataset.mp44.8MB
  310. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/002 MNIST How to Tackle the MNIST.mp46.49MB
  311. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/003 MNIST Relevant Packages.mp411.26MB
  312. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/004 MNIST Model Outline.mp434.65MB
  313. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/005 MNIST Loss and Optimization Algorithm.mp415.77MB
  314. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/006 Calculating the Accuracy of the Model.mp424.45MB
  315. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/007 MNIST Batching and Early Stopping.mp49.48MB
  316. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/008 MNIST Learning.mp431.83MB
  317. 54 - Appendix Deep Learning - TensorFlow 1 Classifying on the MNIST Dataset/009 MNIST Results and Testing.mp445.47MB
  318. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/001 Business Case Getting Acquainted with the Dataset.mp460.25MB
  319. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/002 Business Case Outlining the Solution.mp44.16MB
  320. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/003 The Importance of Working with a Balanced Dataset.mp427.25MB
  321. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/004 Business Case Preprocessing.mp463.7MB
  322. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/006 Creating a Data Provider.mp456.31MB
  323. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/007 Business Case Model Outline.mp442.53MB
  324. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/008 Business Case Optimization.mp426.93MB
  325. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/009 Business Case Interpretation.mp418.6MB
  326. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/010 Business Case Testing the Model.mp44.34MB
  327. 55 - Appendix Deep Learning - TensorFlow 1 Business Case/011 Business Case A Comment on the Homework.mp420.58MB
  328. 56 - Software Integration/001 What are Data, Servers, Clients, Requests, and Responses.mp419.51MB
  329. 56 - Software Integration/002 What are Data Connectivity, APIs, and Endpoints.mp460.23MB
  330. 56 - Software Integration/003 Taking a Closer Look at APIs.mp467.06MB
  331. 56 - Software Integration/004 Communication between Software Products through Text Files.mp421.87MB
  332. 56 - Software Integration/005 Software Integration - Explained.mp442.94MB
  333. 57 - Case Study - What's Next in the Course/001 Game Plan for this Python, SQL, and Tableau Business Exercise.mp419.67MB
  334. 57 - Case Study - What's Next in the Course/002 The Business Task.mp48.35MB
  335. 57 - Case Study - What's Next in the Course/003 Introducing the Data Set.mp424.24MB
  336. 58 - Case Study - Preprocessing the 'Absenteeism_data'/002 Importing the Absenteeism Data in Python.mp419.53MB
  337. 58 - Case Study - Preprocessing the 'Absenteeism_data'/003 Checking the Content of the Data Set.mp454.05MB
  338. 58 - Case Study - Preprocessing the 'Absenteeism_data'/004 Introduction to Terms with Multiple Meanings.mp418MB
  339. 58 - Case Study - Preprocessing the 'Absenteeism_data'/006 Using a Statistical Approach towards the Solution to the Exercise.mp413.75MB
  340. 58 - Case Study - Preprocessing the 'Absenteeism_data'/007 Dropping a Column from a DataFrame in Python.mp441.25MB
  341. 58 - Case Study - Preprocessing the 'Absenteeism_data'/010 Analyzing the Reasons for Absence.mp427.61MB
  342. 58 - Case Study - Preprocessing the 'Absenteeism_data'/011 Obtaining Dummies from a Single Feature.mp469.76MB
  343. 58 - Case Study - Preprocessing the 'Absenteeism_data'/015 More on Dummy Variables A Statistical Perspective.mp45.82MB
  344. 58 - Case Study - Preprocessing the 'Absenteeism_data'/016 Classifying the Various Reasons for Absence.mp459.2MB
  345. 58 - Case Study - Preprocessing the 'Absenteeism_data'/017 Using .concat() in Python.mp427.33MB
  346. 58 - Case Study - Preprocessing the 'Absenteeism_data'/020 Reordering Columns in a Pandas DataFrame in Python.mp49.99MB
  347. 58 - Case Study - Preprocessing the 'Absenteeism_data'/023 Creating Checkpoints while Coding in Jupyter.mp417.33MB
  348. 58 - Case Study - Preprocessing the 'Absenteeism_data'/026 Analyzing the Dates from the Initial Data Set.mp440.13MB
  349. 58 - Case Study - Preprocessing the 'Absenteeism_data'/027 Extracting the Month Value from the Date Column.mp433.93MB
  350. 58 - Case Study - Preprocessing the 'Absenteeism_data'/028 Extracting the Day of the Week from the Date Column.mp419.11MB
  351. 58 - Case Study - Preprocessing the 'Absenteeism_data'/030 Analyzing Several Straightforward Columns for this Exercise.mp420.09MB
  352. 58 - Case Study - Preprocessing the 'Absenteeism_data'/031 Working on Education, Children, and Pets.mp416.92MB
  353. 58 - Case Study - Preprocessing the 'Absenteeism_data'/032 Final Remarks of this Section.mp419.74MB
  354. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/004 Standardizing the Data.mp415.15MB
  355. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/005 Splitting the Data for Training and Testing.mp441.89MB
  356. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/006 Fitting the Model and Assessing its Accuracy.mp435.29MB
  357. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/008 Interpreting the Coefficients for Our Problem.mp424.77MB
  358. 59 - Case Study - Applying Machine Learning to Create the 'absenteeism_module'/012 Testing the Model We Created.mp431.6MB
  359. 60 - Case Study - Loading the 'absenteeism_module'/002 Deploying the 'absenteeism_module' - Part I.mp419.64MB
  360. 60 - Case Study - Loading the 'absenteeism_module'/003 Deploying the 'absenteeism_module' - Part II.mp445.15MB
  361. 61 - Case Study - Analyzing the Predicted Outputs in Tableau/002 Analyzing Age vs Probability in Tableau.mp438.66MB
  362. 61 - Case Study - Analyzing the Predicted Outputs in Tableau/004 Analyzing Reasons vs Probability in Tableau.mp440.24MB
  363. 61 - Case Study - Analyzing the Predicted Outputs in Tableau/006 Analyzing Transportation Expense vs Probability in Tableau.mp419.78MB
  364. 62 - Appendix - Additional Python Tools/001 Using the .format() Method.mp425.69MB
  365. 62 - Appendix - Additional Python Tools/002 Iterating Over Range Objects.mp412.62MB
  366. 62 - Appendix - Additional Python Tools/003 Introduction to Nested For Loops.mp412.13MB
  367. 62 - Appendix - Additional Python Tools/004 Triple Nested For Loops.mp433MB
  368. 62 - Appendix - Additional Python Tools/005 List Comprehensions.mp443.2MB
  369. 62 - Appendix - Additional Python Tools/006 Anonymous (Lambda) Functions.mp430.34MB
  370. 63 - Appendix - pandas Fundamentals/001 Introduction to pandas Series.mp422.21MB
  371. 63 - Appendix - pandas Fundamentals/002 Working with Methods in Python - Part I.mp419.55MB
  372. 63 - Appendix - pandas Fundamentals/003 Working with Methods in Python - Part II.mp49MB
  373. 63 - Appendix - pandas Fundamentals/004 Parameters and Arguments in pandas.mp421.14MB
  374. 63 - Appendix - pandas Fundamentals/005 Using .unique() and .nunique().mp424.29MB
  375. 63 - Appendix - pandas Fundamentals/006 Using .sort_values().mp421.04MB
  376. 63 - Appendix - pandas Fundamentals/007 Introduction to pandas DataFrames - Part I.mp410.61MB
  377. 63 - Appendix - pandas Fundamentals/008 Introduction to pandas DataFrames - Part II.mp417.83MB
  378. 63 - Appendix - pandas Fundamentals/009 pandas DataFrames - Common Attributes.mp429.79MB
  379. 63 - Appendix - pandas Fundamentals/010 Data Selection in pandas DataFrames.mp437.26MB
  380. 63 - Appendix - pandas Fundamentals/011 pandas DataFrames - Indexing with .iloc[].mp432.22MB
  381. 63 - Appendix - pandas Fundamentals/012 pandas DataFrames - Indexing with .loc[].mp420.69MB
  382. 64 - Appendix - Working with Text Files in Python/001 An Introduction to Working with Files in Python.mp412.03MB
  383. 64 - Appendix - Working with Text Files in Python/002 File vs File Object, Reading vs Parsing Data.mp49.42MB
  384. 64 - Appendix - Working with Text Files in Python/003 Structured, Semi-Structured and Unstructured Data.mp411.07MB
  385. 64 - Appendix - Working with Text Files in Python/004 Text Files and Data Connectivity.mp410.81MB
  386. 64 - Appendix - Working with Text Files in Python/005 Importing Data in Python - Principles.mp416.72MB
  387. 64 - Appendix - Working with Text Files in Python/006 Plain Text Files, Flat Files and More.mp413.16MB
  388. 64 - Appendix - Working with Text Files in Python/007 Text Files of Fixed Width.mp44.83MB
  389. 64 - Appendix - Working with Text Files in Python/008 Common Naming Conventions.mp48.21MB
  390. 64 - Appendix - Working with Text Files in Python/009 Importing Text Files - open().mp428.19MB
  391. 64 - Appendix - Working with Text Files in Python/010 Importing Text Files - with open().mp426.26MB
  392. 64 - Appendix - Working with Text Files in Python/011 Importing .csv Files - Part I.mp449.87MB
  393. 64 - Appendix - Working with Text Files in Python/012 Importing .csv Files - Part II.mp410.92MB
  394. 64 - Appendix - Working with Text Files in Python/013 Importing .csv Files - Part III.mp475.01MB
  395. 64 - Appendix - Working with Text Files in Python/014 Importing Data with index_col.mp411.63MB
  396. 64 - Appendix - Working with Text Files in Python/015 Importing Data with .loadtxt() and .genfromtxt().mp456.33MB
  397. 64 - Appendix - Working with Text Files in Python/016 Importing Data - Partial Cleaning While Importing Data.mp443.91MB
  398. 64 - Appendix - Working with Text Files in Python/018 Importing Data from .json Files.mp481.95MB
  399. 64 - Appendix - Working with Text Files in Python/019 An Introduction to Working with Excel Files in Python.mp442.98MB
  400. 64 - Appendix - Working with Text Files in Python/020 Working with Excel (.xlsx) Data.mp414.41MB
  401. 64 - Appendix - Working with Text Files in Python/021 Importing Data in Python - an Important Exercise.mp443.01MB
  402. 64 - Appendix - Working with Text Files in Python/022 Importing Data with the .squeeze() Method.mp422.42MB
  403. 64 - Appendix - Working with Text Files in Python/023 Importing Files in Jupyter.mp419.57MB
  404. 64 - Appendix - Working with Text Files in Python/024 Saving Your Data with pandas.mp421.06MB
  405. 64 - Appendix - Working with Text Files in Python/025 Saving Your Data with NumPy - Part I - .npy.mp418.91MB
  406. 64 - Appendix - Working with Text Files in Python/026 Saving Your Data with NumPy - Part II - .npz.mp423.26MB
  407. 64 - Appendix - Working with Text Files in Python/027 Saving Your Data with NumPy - Part III - .csv.mp420.83MB
  408. 64 - Appendix - Working with Text Files in Python/029 Working with Text Files in Python - Conclusion.mp42.11MB
友情提示
不会用的朋友看这里 把磁力链接复制到离线下载,或者bt下载软件里即可下载文件,或者直接复制迅雷链接到迅雷里下载! 亲,你造吗?将网页分享给您的基友,下载的人越多速度越快哦!

违规内容投诉邮箱:[email protected]

概述 838888磁力搜索是一个磁力链接搜索引擎,是学术研究的副产品,用于解决资源过度分散的问题 它通过BitTorrent协议加入DHT网络,实时的自动采集数据,仅存储文件的标题、大小、文件列表、文件标识符(磁力链接)等基础信息 838888磁力搜索不下载任何真实资源,无法判断资源的合法性及真实性,使用838888磁力搜索服务的用户需自行鉴别内容的真伪 838888磁力搜索不上传任何资源,不提供Tracker服务,不提供种子文件的下载,这意味着838888磁力搜索 838888磁力搜索是一个完全合法的系统