~Get Your Files Here !/1. Introduction to Machine Learning with Real Hearth Attack Prediction Project/1. First Step to the Hearth Attack Prediction Project.mp4108.57MB
~Get Your Files Here !/1. Introduction to Machine Learning with Real Hearth Attack Prediction Project/3. Notebook Design to be Used in the Project.mp497.66MB
~Get Your Files Here !/1. Introduction to Machine Learning with Real Hearth Attack Prediction Project/5. Examining the Project Topic.mp471.67MB
~Get Your Files Here !/1. Introduction to Machine Learning with Real Hearth Attack Prediction Project/6. Recognizing Variables In Dataset.mp4115.34MB
~Get Your Files Here !/2. First Organization/1. Required Python Libraries.mp458.76MB
~Get Your Files Here !/2. First Organization/2. Loading the Statistics Dataset in Data Science.mp49.32MB
~Get Your Files Here !/2. First Organization/3. Initial analysis on the dataset.mp458.67MB
~Get Your Files Here !/3. Preparation For Exploratory Data Analysis (EDA) in Data Science/1. Examining Missing Values.mp442.38MB
~Get Your Files Here !/3. Preparation For Exploratory Data Analysis (EDA) in Data Science/2. Examining Unique Values.mp441.01MB
~Get Your Files Here !/3. Preparation For Exploratory Data Analysis (EDA) in Data Science/3. Separating variables (Numeric or Categorical).mp414.74MB
~Get Your Files Here !/3. Preparation For Exploratory Data Analysis (EDA) in Data Science/4. Examining Statistics of Variables.mp484.27MB
~Get Your Files Here !/4. Exploratory Data Analysis (EDA) - Uni-variate Analysis/1. Numeric Variables (Analysis with Distplot) Lesson 1.mp474.57MB
~Get Your Files Here !/4. Exploratory Data Analysis (EDA) - Uni-variate Analysis/2. Numeric Variables (Analysis with Distplot) Lesson 2.mp418.33MB
~Get Your Files Here !/4. Exploratory Data Analysis (EDA) - Uni-variate Analysis/3. Categoric Variables (Analysis with Pie Chart) Lesson 1.mp469.02MB
~Get Your Files Here !/4. Exploratory Data Analysis (EDA) - Uni-variate Analysis/4. Categoric Variables (Analysis with Pie Chart) Lesson 2.mp477.98MB
~Get Your Files Here !/4. Exploratory Data Analysis (EDA) - Uni-variate Analysis/5. Examining the Missing Data According to the Analysis Result.mp449.98MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/1. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 1.mp445.33MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/10. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 2.mp464MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/11. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 1.mp435.96MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/12. Numerical - Categorical Variables (Analysis with Box Plot) Lesson 2.mp432.78MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/13. Relationships between variables (Analysis with Heatmap) Lesson 1.mp433.73MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/14. Relationships between variables (Analysis with Heatmap) Lesson 2.mp482.49MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/2. Numeric Variables – Target Variable (Analysis with FacetGrid) Lesson 2.mp432.76MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/3. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 1.mp422.32MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/4. Categoric Variables – Target Variable (Analysis with Count Plot) Lesson 2.mp452.33MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/5. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 1.mp426.56MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/6. Examining Numeric Variables Among Themselves (Analysis with Pair Plot) Lesson 2.mp443.9MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/7. Feature Scaling with the Robust Scaler Method.mp432.65MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/8. Creating a New DataFrame with the Melt() Function.mp448.78MB
~Get Your Files Here !/5. Exploratory Data Analysis (EDA) - Bi-variate Analysis/9. Numerical - Categorical Variables (Analysis with Swarm Plot) Lesson 1.mp439.27MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/1. Dropping Columns with Low Correlation.mp424.77MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/10. Feature Scaling with the Robust Scaler Method for Machine Learning Algorithms.mp410.62MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/11. Separating Data into Test and Training Set.mp427.77MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/2. Visualizing Outliers.mp432.72MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/3. Dealing with Outliers – Trtbps Variable Lesson 1.mp439.97MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/4. Dealing with Outliers – Trtbps Variable Lesson 2.mp440.84MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/5. Dealing with Outliers – Thalach Variable.mp433.69MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/6. Dealing with Outliers – Oldpeak Variable.mp433.33MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/7. Determining Distributions of Numeric Variables.mp423.33MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/8. Transformation Operations on Unsymmetrical Data.mp422.18MB
~Get Your Files Here !/6. Preparation for Modelling in Machine Learning/9. Applying One Hot Encoding Method to Categorical Variables.mp422.41MB
~Get Your Files Here !/7. Modelling for Machine Learning/1. Logistic Regression.mp427.3MB
~Get Your Files Here !/7. Modelling for Machine Learning/2. Cross Validation.mp428.16MB
~Get Your Files Here !/7. Modelling for Machine Learning/3. Roc Curve and Area Under Curve (AUC).mp438.63MB
~Get Your Files Here !/7. Modelling for Machine Learning/4. Hyperparameter Optimization (with GridSearchCV).mp454.75MB
~Get Your Files Here !/7. Modelling for Machine Learning/5. Decision Tree Algorithm.mp424.03MB
~Get Your Files Here !/7. Modelling for Machine Learning/6. Support Vector Machine Algorithm.mp422.69MB
~Get Your Files Here !/7. Modelling for Machine Learning/7. Random Forest Algorithm.mp427.73MB
~Get Your Files Here !/7. Modelling for Machine Learning/8. Hyperparameter Optimization (with GridSearchCV).mp448.56MB
~Get Your Files Here !/8. Conclusion/1. Project Conclusion and Sharing.mp426.95MB